#!/usr/bin/env python # def laguerre_polynomial_values ( n_data ): #*****************************************************************************80 # ## LAGUERRE_POLYNOMIAL_VALUES returns some values of the Laguerre polynomial. # # Discussion: # # In Mathematica, the function can be evaluated by: # # LaguerreL[n,x] # # Differential equation: # # X * Y'' + (1-X) * Y' + N * Y = 0 # # First terms: # # 1 # -X + 1 # ( X^2 - 4 X + 2 ) / 2 # ( -X^3 + 9 X^2 - 18 X + 6 ) / 6 # ( X^4 - 16 X^3 + 72 X^2 - 96 X + 24 ) / 24 # ( -X^5 + 25 X^4 - 200 X^3 + 600 X^2 - 600 X + 120 ) / 120 # ( X^6 - 36 X^5 + 450 X^4 - 2400 X^3 + 5400 X^2 - 4320 X + 720 ) / 720 # ( -X^7 + 49 X^6 - 882 X^5 + 7350 X^4 - 29400 X^3 + 52920 X^2 - 35280 X + 5040 ) / 5040 # # Recursion: # # L(0)(X) = 1, # L(1)(X) = 1-X, # N * L(N)(X) = (2*N-1-X) * L(N-1)(X) - (N-1) * L(N-2)(X) # # Orthogonality: # # Integral ( 0 <= X < oo ) exp ( - X ) * L(N)(X) * L(M)(X) dX # = 0 if N /= M # = 1 if N == M # # Special values: # # L(N)(0) = 1. # # Relations: # # L(N)(X) = (-1)^N / N! * exp ( x ) * (d/dx)^n ( exp ( - x ) * X^n ) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N, the order of the polynomial. # # Output, real X, the point where the polynomial is evaluated. # # Output, real F, the value of the function. # import numpy as np n_max = 17 f_vec = np.array ( ( \ 0.1000000000000000E+01, \ 0.0000000000000000E+00, \ -0.5000000000000000E+00, \ -0.6666666666666667E+00, \ -0.6250000000000000E+00, \ -0.4666666666666667E+00, \ -0.2569444444444444E+00, \ -0.4047619047619048E-01, \ 0.1539930555555556E+00, \ 0.3097442680776014E+00, \ 0.4189459325396825E+00, \ 0.4801341790925124E+00, \ 0.4962122235082305E+00, \ -0.4455729166666667E+00, \ 0.8500000000000000E+00, \ -0.3166666666666667E+01, \ 0.3433333333333333E+02 )) n_vec = np.array ( ( \ 0, 1, 2, \ 3, 4, 5, \ 6, 7, 8, \ 9, 10, 11, \ 12, 5, 5, \ 5, 5 )) x_vec = np.array ( ( \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 0.5E+00, \ 3.0E+00, \ 5.0E+00, \ 1.0E+01 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0 x = 0.0 f = 0.0 else: n = n_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, n, x, f def laguerre_polynomial_values_test ( ): #*****************************************************************************80 # ## LAGUERRE_POLYNOMIAL_VALUES_TEST demonstrates LAGUERRE_POLYNOMIAL_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # print '' print 'LAGUERRE_POLYNOMIAL_VALUES_TEST:' print ' LAGUERRE_POLYNOMIAL_VALUES stores values of' print ' the Laguerre polynomials.' print '' print ' N X L(N)(X)' print '' n_data = 0 while ( True ): [ n_data, n, x, f ] = laguerre_polynomial_values ( n_data ); if ( n_data == 0 ): break print ' %4d %12f %24.16f' % ( n, x, f ) print '' print 'LAGUERRE_POLYNOMIAL_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) laguerre_polynomial_values_test ( ) timestamp ( )