#!/usr/bin/env python # def lambert_w_values ( n_data ): #*****************************************************************************80 # ## LAMBERT_W_VALUES returns some values of the Lambert W function. # # Discussion: # # The function W(X) is defined implicitly by: # # W(X) * e^W(X) = X # # The function is also known as the "Omega" function. # # In Mathematica, the function can be evaluated by: # # W = ProductLog [ X ] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # # Reference: # # Brian Hayes, # "Why W?", # The American Scientist, # Volume 93, March-April 2005, pages 104-108. # # Eric Weisstein, # "Lambert's W-Function", # CRC Concise Encyclopedia of Mathematics, # CRC Press, 1998. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, the argument of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 22 f_vec = np.array ( ( \ 0.0000000000000000E+00, \ 0.3517337112491958E+00, \ 0.5671432904097839E+00, \ 0.7258613577662263E+00, \ 0.8526055020137255E+00, \ 0.9585863567287029E+00, \ 0.1000000000000000E+01, \ 0.1049908894964040E+01, \ 0.1130289326974136E+01, \ 0.1202167873197043E+01, \ 0.1267237814307435E+01, \ 0.1326724665242200E+01, \ 0.1381545379445041E+01, \ 0.1432404775898300E+01, \ 0.1479856830173851E+01, \ 0.1524345204984144E+01, \ 0.1566230953782388E+01, \ 0.1605811996320178E+01, \ 0.1745528002740699E+01, \ 0.3385630140290050E+01, \ 0.5249602852401596E+01, \ 0.1138335808614005E+02 )) x_vec = np.array ( ( \ 0.0000000000000000E+00, \ 0.5000000000000000E+00, \ 0.1000000000000000E+01, \ 0.1500000000000000E+01, \ 0.2000000000000000E+01, \ 0.2500000000000000E+01, \ 0.2718281828459045E+01, \ 0.3000000000000000E+01, \ 0.3500000000000000E+01, \ 0.4000000000000000E+01, \ 0.4500000000000000E+01, \ 0.5000000000000000E+01, \ 0.5500000000000000E+01, \ 0.6000000000000000E+01, \ 0.6500000000000000E+01, \ 0.7000000000000000E+01, \ 0.7500000000000000E+01, \ 0.8000000000000000E+01, \ 0.1000000000000000E+02, \ 0.1000000000000000E+03, \ 0.1000000000000000E+04, \ 0.1000000000000000E+07 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 f = 0.0 else: x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, x, f def lambert_w_values_test ( ): #*****************************************************************************80 # ## LAMBERT_W_VALUES_TEST demonstrates the use of LAMBERT_W_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # print '' print 'LAMBERT_W_VALUES_TEST:' print ' LAMBERT_W_VALUES stores values of the Lambert W function.' print '' print ' X LAMBERT_W(X)' print '' n_data = 0 while ( True ): n_data, x, f = lambert_w_values ( n_data ) if ( n_data == 0 ): break print ' %12f %24.16f' % ( x, f ) print '' print 'LAMBERT_W_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) lambert_w_values_test ( ) timestamp ( )