#!/usr/bin/env python # def legendre_associated_normalized_values ( n_data ): #*****************************************************************************80 # ## LEGENDRE_ASSOCIATED_NORMALIZED_VALUES returns values of associated Legendre functions. # # Discussion: # # The function considered is the associated Legendre polynomial P^M_N(X). # # In Mathematica, the function can be evaluated by: # # LegendreP [ n, m, x ] # # The function is normalized by dividing by # # sqrt ( 2 * ( n + m )! / ( 2 * n + 1 ) / ( n - m )! ) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N, integer M, real X, # the arguments of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 21 f_vec = np.array ( ( \ 0.7071067811865475E+00, \ 0.6123724356957945E+00, \ -0.7500000000000000E+00, \ -0.1976423537605237E+00, \ -0.8385254915624211E+00, \ 0.7261843774138907E+00, \ -0.8184875533567997E+00, \ -0.1753901900050285E+00, \ 0.9606516343087123E+00, \ -0.6792832849776299E+00, \ -0.6131941618102092E+00, \ 0.6418623720763665E+00, \ 0.4716705890038619E+00, \ -0.1018924927466445E+01, \ 0.6239615396237876E+00, \ 0.2107022704608181E+00, \ 0.8256314721961969E+00, \ -0.3982651281554632E+00, \ -0.7040399320721435E+00, \ 0.1034723155272289E+01, \ -0.5667412129155530E+00 )) m_vec = np.array ( ( \ 0, 0, 1, 0, \ 1, 2, 0, 1, \ 2, 3, 0, 1, \ 2, 3, 4, 0, \ 1, 2, 3, 4, \ 5 )) n_vec = np.array ( ( \ 0, 1, 1, 2, \ 2, 2, 3, 3, \ 3, 3, 4, 4, \ 4, 4, 4, 5, \ 5, 5, 5, 5, \ 5 )) x_vec = np.array ( ( \ 0.50, \ 0.50, \ 0.50, \ 0.50, \ 0.50, \ 0.50, \ 0.50, \ 0.50, \ 0.50, \ 0.50, \ 0.50, \ 0.50, \ 0.50, \ 0.50, \ 0.50, \ 0.50, \ 0.50, \ 0.50, \ 0.50, \ 0.50, \ 0.50 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0 m = 0 x = 0.0 f = 0.0 else: n = n_vec[n_data] m = m_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, n, m, x, f def legendre_associated_normalized_values_test ( ): #*****************************************************************************80 # ## LEGENDRE_ASSOCIATED_NORMALIZED_VALUES_TEST demonstrates LEGENDRE_ASSOCIATED_NORMALIZED_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 February 2015 # # Author: # # John Burkardt # print '' print 'LEGENDRE_ASSOCIATED_NORMALIZED_VALUES_TEST:' print ' LEGENDRE_ASSOCIATED_NORMALIZED_VALUES stores values of the ' print ' normalized associated Legendre function.' print '' print ' N M X F' print '' n_data = 0 while ( True ): n_data, n, m, x, f = legendre_associated_normalized_values ( n_data ) if ( n_data == 0 ): break print ' %6d %6d %12f %24.16g' % ( n, m, x, f ) print '' print 'LEGENDRE_ASSOCIATED_NORMALIZED_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) legendre_associated_normalized_values_test ( ) timestamp ( )