#!/usr/bin/env python # def legendre_function_q_values ( n_data ): #*****************************************************************************80 # ## LEGENDRE_FUNCTION_Q_VALUES returns values of the Legendre Q function. # # Discussion: # # In Mathematica, the function can be evaluated by: # # LegendreQ[n,x] # # Differential equation: # # (1-X*X) Y'' - 2 X Y' + N (N+1) = 0 # # First terms: # # Q(0)(X) = 0.5 * log((1+X)/(1-X)) # Q(1)(X) = Q(0)(X)*X - 1 # Q(2)(X) = Q(0)(X)*(3*X*X-1)/4 - 1.5*X # Q(3)(X) = Q(0)(X)*(5*X*X*X-3*X)/4 - 2.5*X**2 + 2/3 # Q(4)(X) = Q(0)(X)*(35*X**4-30*X**2+3)/16 - 35/8 * X**3 + 55/24 * X # Q(5)(X) = Q(0)(X)*(63*X**5-70*X**3+15*X)/16 - 63/8*X**4 + 49/8*X**2 - 8/15 # # Recursion: # # Q(0) = 0.5 * log ( (1+X) / (1-X) ) # Q(1) = 0.5 * X * log ( (1+X) / (1-X) ) - 1.0 # # Q(N) = ( (2*N-1) * X * Q(N-1) - (N-1) * Q(N-2) ) / N # # Restrictions: # # -1 < X < 1 # # Special values: # # Note that the Legendre function Q(N)(X) is equal to the # associated Legendre function of the second kind, # Q(N,M)(X) with M = 0. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N, the order of the function. # # Output, real X, the point where the function is evaluated. # # Output, real F, the value of the function. # import numpy as np n_max = 21 f_vec = np.array ( ( \ 0.2554128118829953E+00, \ -0.9361467970292512E+00, \ -0.4787614548274669E+00, \ 0.4246139251747229E+00, \ 0.5448396833845414E+00, \ -0.9451328261673470E-01, \ -0.4973516573531213E+00, \ -0.1499018843853194E+00, \ 0.3649161918783626E+00, \ 0.3055676545072885E+00, \ -0.1832799367995643E+00, \ 0.6666666666666667E+00, \ 0.6268672028763330E+00, \ 0.5099015515315237E+00, \ 0.3232754180589764E+00, \ 0.8026113738148187E-01, \ -0.1986547714794823E+00, \ -0.4828663183349136E+00, \ -0.7252886849144386E+00, \ -0.8454443502398846E+00, \ -0.6627096245052618E+00 )) n_vec = np.array ( ( \ 0, 1, 2, \ 3, 4, 5, \ 6, 7, 8, \ 9, 10, 3, \ 3, 3, 3, \ 3, 3, 3, \ 3, 3, 3 )) x_vec = np.array ( ( \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.00E+00, \ 0.10E+00, \ 0.20E+00, \ 0.30E+00, \ 0.40E+00, \ 0.50E+00, \ 0.60E+00, \ 0.70E+00, \ 0.80E+00, \ 0.90E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0 x = 0.0 f = 0.0 else: n = n_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, n, x, f def legendre_function_q_values_test ( ): #*****************************************************************************80 # ## LEGENDRE_FUNCTION_Q_VALUES_TEST demonstrates the use of LEGENDRE_FUNCTION_Q_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 February 2015 # # Author: # # John Burkardt # print '' print 'LEGENDRE_FUNCTION_Q_VALUES_TEST:' print ' LEGENDRE_FUNCTION_Q_VALUES stores values of the Legendre Q function' print '' print ' N X F' print '' n_data = 0 while ( True ): n_data, n, x, f = legendre_function_q_values ( n_data ) if ( n_data == 0 ): break print ' %6d %12f %24.16g' % ( n, x, f ) print '' print 'LEGENDRE_FUNCTION_Q_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) legendre_function_q_values_test ( ) timestamp ( )