#!/usr/bin/env python # def legendre_poly_values ( n_data ): #*****************************************************************************80 # ## LEGENDRE_POLY_VALUES returns values of the Legendre polynomials. # # Discussion: # # In Mathematica, the function can be evaluated by: # # LegendreP [ n, x ] # # Differential equation: # # (1-X*X) * P(N,X)'' - 2 * X * P(N,X)' + N * (N+1) = 0 # # First terms: # # P( 0,X) = 1 # P( 1,X) = 1 X # P( 2,X) = ( 3 X^2 - 1)/2 # P( 3,X) = ( 5 X^3 - 3 X)/2 # P( 4,X) = ( 35 X^4 - 30 X^2 + 3)/8 # P( 5,X) = ( 63 X^5 - 70 X^3 + 15 X)/8 # P( 6,X) = ( 231 X^6 - 315 X^4 + 105 X^2 - 5)/16 # P( 7,X) = ( 429 X^7 - 693 X^5 + 315 X^3 - 35 X)/16 # P( 8,X) = ( 6435 X^8 - 12012 X^6 + 6930 X^4 - 1260 X^2 + 35)/128 # P( 9,X) = (12155 X^9 - 25740 X^7 + 18018 X^5 - 4620 X^3 + 315 X)/128 # P(10,X) = (46189 X^10-109395 X^8 + 90090 X^6 - 30030 X^4 + 3465 X^2-63 ) /256 # # Recursion: # # P(0,X) = 1 # P(1,X) = X # P(N,X) = ( (2*N-1)*X*P(N-1,X)-(N-1)*P(N-2,X) ) / N # # P'(0,X) = 0 # P'(1,X) = 1 # P'(N,X) = ( (2*N-1)*(P(N-1,X)+X*P'(N-1,X)-(N-1)*P'(N-2,X) ) / N # # Formula: # # P(N,X) = (1/2**N) * sum ( 0 <= M <= N/2 ) C(N,M) C(2N-2M,N) X^(N-2*M) # # Orthogonality: # # Integral ( -1 <= X <= 1 ) P(I,X) * P(J,X) dX # = 0 if I =/= J # = 2 / ( 2*I+1 ) if I = J. # # Approximation: # # A function F(X) defined on [-1,1] may be approximated by the series # # C0*P(0,X) + C1*P(1,X) + \ + CN*P(N,X) # # where # # C(I) = (2*I+1)/(2) * Integral ( -1 <= X <= 1 ) F(X) P(I,X) dx. # # Special values: # # P(N,1) = 1. # P(N,-1) = (-1)^N. # | P(N,X) | <= 1 in [-1,1]. # # P(N,0,X) = P(N,X), that is, for M=0, the associated Legendre # function of the first kind and order N equals the Legendre polynomial # of the first kind and order N. # # The N zeroes of P(N,X) are the abscissas used for Gauss-Legendre # quadrature of the integral of a function F(X) with weight function 1 # over the interval [-1,1]. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N, the order of the function. # # Output, real X, the point where the function is evaluated. # # Output, real F, the value of the function. # import numpy as np n_max = 22 f_vec = np.array ( ( \ 0.1000000000000000E+01, \ 0.2500000000000000E+00, \ -0.4062500000000000E+00, \ -0.3359375000000000E+00, \ 0.1577148437500000E+00, \ 0.3397216796875000E+00, \ 0.2427673339843750E-01, \ -0.2799186706542969E+00, \ -0.1524540185928345E+00, \ 0.1768244206905365E+00, \ 0.2212002165615559E+00, \ 0.0000000000000000E+00, \ -0.1475000000000000E+00, \ -0.2800000000000000E+00, \ -0.3825000000000000E+00, \ -0.4400000000000000E+00, \ -0.4375000000000000E+00, \ -0.3600000000000000E+00, \ -0.1925000000000000E+00, \ 0.8000000000000000E-01, \ 0.4725000000000000E+00, \ 0.1000000000000000E+01 )) n_vec = np.array ( ( \ 0, 1, 2, \ 3, 4, 5, \ 6, 7, 8, \ 9, 10, 3, \ 3, 3, 3, \ 3, 3, 3, \ 3, 3, 3, \ 3 )) x_vec = np.array ( ( \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.00E+00, \ 0.10E+00, \ 0.20E+00, \ 0.30E+00, \ 0.40E+00, \ 0.50E+00, \ 0.60E+00, \ 0.70E+00, \ 0.80E+00, \ 0.90E+00, \ 1.00E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0 x = 0.0 f = 0.0 else: n = n_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, n, x, f def legendre_poly_values_test ( ): #*****************************************************************************80 # ## LEGENDRE_POLY_VALUES_TEST demonstrates the use of LEGENDRE_POLY_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 February 2015 # # Author: # # John Burkardt # print '' print 'LEGENDRE_POLY_VALUES_TEST:' print ' LEGENDRE_POLY_VALUES stores values of the Legendre polynomials.' print '' print ' N X F' print '' n_data = 0 while ( True ): n_data, n, x, f = legendre_poly_values ( n_data ) if ( n_data == 0 ): break print ' %6d %12f %24.16g' % ( n, x, f ) print '' print 'LEGENDRE_POLY_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) legendre_poly_values_test ( ) timestamp ( )