#!/usr/bin/env python # def lobachevsky_values ( n_data ): #*****************************************************************************80 # ## LOBACHEVSKY_VALUES returns some values of the Lobachevsky function. # # Discussion: # # The function is defined by: # # LOBACHEVSKY(x) = Integral ( 0 <= t <= x ) -ln ( abs ( cos ( t ) ) dt # # The data was reported by McLeod. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 February 2015 # # Author: # # John Burkardt # # Reference: # # Allan McLeod, # Algorithm 757, MISCFUN: A software package to compute uncommon # special functions, # ACM Transactions on Mathematical Software, # Volume 22, Number 3, September 1996, pages 288-301. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, the argument of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 20 f_vec = np.array ( ( \ 0.12417639065161393857E-08, \ 0.79473344770001088225E-07, \ 0.50867598186208834198E-05, \ 0.32603097901207200319E-03, \ 0.21380536815408214419E-01, \ 0.18753816902083824050E+00, \ 0.83051199971883645115E+00, \ 0.18854362426679034904E+01, \ 0.21315988986516411053E+01, \ 0.21771120185613427221E+01, \ 0.22921027921896650849E+01, \ 0.39137195028784495586E+01, \ 0.43513563983836427904E+01, \ 0.44200644968478185898E+01, \ 0.65656013133623829156E+01, \ 0.10825504661504599479E+02, \ 0.13365512855474227325E+02, \ 0.21131002685639959927E+02, \ 0.34838236589449117389E+02, \ 0.69657062437837394278E+02 )) x_vec = np.array ( ( \ 0.0019531250E+00, \ 0.0078125000E+00, \ 0.0312500000E+00, \ 0.1250000000E+00, \ 0.5000000000E+00, \ 1.0000000000E+00, \ 1.5000000000E+00, \ 2.0000000000E+00, \ 2.5000000000E+00, \ 3.0000000000E+00, \ 4.0000000000E+00, \ 5.0000000000E+00, \ 6.0000000000E+00, \ 7.0000000000E+00, \ 10.0000000000E+00, \ 15.0000000000E+00, \ 20.0000000000E+00, \ 30.0000000000E+00, \ 50.0000000000E+00, \ 100.0000000000E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 f = 0.0 else: x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, x, f def lobachevsky_values_test ( ): #*****************************************************************************80 # ## LOBACHEVSKY_VALUES_TEST demonstrates the use of LOBACHEVSKY_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 February 2015 # # Author: # # John Burkardt # print '' print 'LOBACHEVSKY_VALUES_TEST:' print ' LOBACHEVSKY_VALUES stores values of the LOBACHEVSKY function.' print '' print ' X LOBACHEVSKY(X)' print '' n_data = 0 while ( True ): n_data, x, f = lobachevsky_values ( n_data ) if ( n_data == 0 ): break print ' %12f %24.16f' % ( x, f ) print '' print 'LOBACHEVSKY_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) lobachevsky_values_test ( ) timestamp ( )