#!/usr/bin/env python def lobatto_polynomial_derivatives ( n_data ): #*****************************************************************************80 # ## LOBATTO_POLYNOMIAL_DERIVATIVES: derivatives of completed Lobatto polynomials. # # Discussion: # # In Mathematica, the completed Lobatto polynomial can be evaluated by: # # n * LegendreP [ n - 1, x ] - n * x * LegendreP [ n, x ] # # The derivative is: # # n * D[LegendreP [ n - 1, x ], {x} ] # - n * LegendreP [ n, x ] # - n * x * D[LegendreP [ n, x ], {x}] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 November 2014 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N, the order of the function. # # Output, real X, the point where the function is evaluated. # # Output, real FX, the value of the function. # import numpy as np n_max = 31; fx_vec = np.array ( ( \ -0.5, \ 2.437500000000000, \ 4.031250000000000, \ -3.154296875000000, \ -10.19165039062500, \ -1.019622802734375, \ 15.67544555664063, \ 10.97668933868408, \ -15.91419786214828, \ -24.33202382177114, \ 12.00000000000000, \ 5.670000000000000, \ 0.9600000000000000, \ -2.310000000000000, \ -4.320000000000000, \ -5.250000000000000, \ -5.280000000000000, \ -4.590000000000000, \ -3.360000000000000, \ -1.770000000000000, \ 0.0, \ 1.770000000000000, \ 3.360000000000000, \ 4.590000000000000, \ 5.280000000000000, \ 5.250000000000000, \ 4.320000000000000, \ 2.310000000000000, \ -0.9600000000000000, \ -5.670000000000000, \ -12.00000000000000 )) n_vec = np.array ( ( \ 1, 2, \ 3, 4, 5, \ 6, 7, 8, \ 9, 10, 3, \ 3, 3, 3, \ 3, 3, 3, \ 3, 3, 3, \ 3, 3, 3, \ 3, 3, 3, \ 3, 3, 3, \ 3, 3 )) x_vec = np.array ( ( \ 0.25, \ 0.25, \ 0.25, \ 0.25, \ 0.25, \ 0.25, \ 0.25, \ 0.25, \ 0.25, \ 0.25, \ -1.00, \ -0.90, \ -0.80, \ -0.70, \ -0.60, \ -0.50, \ -0.40, \ -0.30, \ -0.20, \ -0.10, \ 0.00, \ 0.10, \ 0.20, \ 0.30, \ 0.40, \ 0.50, \ 0.60, \ 0.70, \ 0.80, \ 0.90, \ 1.00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0 x = 0.0 fx = 0.0 else: n = n_vec[n_data] x = x_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, n, x, fx def lobatto_polynomial_derivatives_test ( ): #*****************************************************************************80 # ## LOBATTO_POLYNOMIAL_DERIVATIVES_TEST tests LOBATTO_POLYNOMIAL_DERIVATIVES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 November 2014 # # Author: # # John Burkardt # print '' print 'LOBATTO_POLYNOMIAL_DERIVATIVES_TEST:' print ' LOBATTO_POLYNOMIAL_DERIVATIVES stores derivatives of' print ' the completed Lobatto polynomials.' print '' print ' N X Lo\'(N)(X)' print '' n_data = 0 while ( True ): n_data, n, x, fx = lobatto_polynomial_derivatives ( n_data ) if ( n_data == 0 ): break print ' %4d %12f %24.16f' % ( n, x, fx ) print '' print 'LOBATTO_POLYNOMIAL_DERIVATIVES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) lobatto_polynomial_derivatives_test ( ) timestamp ( )