#!/usr/bin/env python # def lobatto_polynomial_values ( n_data ): #*****************************************************************************80 # ## LOBATTO_POLYNOMIAL_VALUES returns values of the completed Lobatto polynomials. # # Discussion: # # In Mathematica, the function can be evaluated by: # # n * LegendreP [ n - 1, x ] - n * x * LegendreP [ n, x ] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 02 May 2013 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N, the order of the function. # # Output, real X, the point where the function is evaluated. # # Output, real FX, the value of the function. # import numpy as np n_max = 31 fx_vec = np.array ( ( \ 0.9375000000000000, \ 0.7031250000000000, \ -0.9667968750000000, \ -1.501464843750000, \ 0.3639221191406250, \ 2.001914978027344, \ 0.6597948074340820, \ -1.934441328048706, \ -1.769941113889217, \ 1.215243665501475, \ 0.000000000000000, \ 0.8692500000000000, \ 1.188000000000000, \ 1.109250000000000, \ 0.7680000000000000, \ 0.2812500000000000, \ -0.2520000000000000, \ -0.7507500000000000, \ -1.152000000000000, \ -1.410750000000000, \ -1.500000000000000, \ -1.410750000000000, \ -1.152000000000000, \ -0.7507500000000000, \ -0.2520000000000000, \ 0.2812500000000000, \ 0.7680000000000000, \ 1.109250000000000, \ 1.188000000000000, \ 0.8692500000000000, \ 0.000000000000000 ) ) n_vec = np.array ( ( \ 1, 2, \ 3, 4, 5, \ 6, 7, 8, \ 9, 10, 3, \ 3, 3, 3, \ 3, 3, 3, \ 3, 3, 3, \ 3, 3, 3, \ 3, 3, 3, \ 3, 3, 3, \ 3, 3 ) ) x_vec = np.array ( ( \ 0.25, \ 0.25, \ 0.25, \ 0.25, \ 0.25, \ 0.25, \ 0.25, \ 0.25, \ 0.25, \ 0.25, \ -1.00, \ -0.90, \ -0.80, \ -0.70, \ -0.60, \ -0.50, \ -0.40, \ -0.30, \ -0.20, \ -0.10, \ 0.00, \ 0.10, \ 0.20, \ 0.30, \ 0.40, \ 0.50, \ 0.60, \ 0.70, \ 0.80, \ 0.90, \ 1.00 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0 x = 0.0 fx = 0.0 else: n = n_vec[n_data] x = x_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, n, x, fx def lobatto_polynomial_values_test ( ): #*****************************************************************************80 # ## LOBATTO_POLYNOMIAL_VALUES_TEST demonstrates the use of LOBATTO_POLYNOMIAL_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 November 2014 # # Author: # # John Burkardt # print '' print 'LOBATTO_POLYNOMIAL_VALUES_TEST:' print ' LOBATTO_POLYNOMIAL_VALUES stores values of' print ' the completed Lobatto polynomials.' print '' print ' N X Lo(N)(X)' print '' n_data = 0 while ( True ): [ n_data, n, x, fx ] = lobatto_polynomial_values ( n_data ); if ( n_data == 0 ): break print ' %4d %12f %24.16f' % ( n, x, fx ) print '' print 'LOBATTO_POLYNOMIAL_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) lobatto_polynomial_values_test ( ) timestamp ( )