#!/usr/bin/env python # def log_series_cdf_values ( n_data ): #*****************************************************************************80 # ## LOG_SERIES_CDF_VALUES returns some values of the log series CDF. # # Discussion: # # In Mathematica, the function can be evaluated by: # # Needs["Statistics`DiscreteDistributions`] # dist = LogSeriesDistribution [ t ] # CDF [ dist, n ] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 February 2015 # # Author: # # John Burkardt # # Reference: # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real T, the parameter of the function. # # Output, integer N, the argument of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 29 f_vec = np.array ( ( \ 0.9491221581029903E+00, \ 0.9433541128559735E+00, \ 0.9361094611773272E+00, \ 0.9267370278044118E+00, \ 0.9141358246245129E+00, \ 0.8962840235449100E+00, \ 0.8690148741955517E+00, \ 0.8221011541254772E+00, \ 0.7213475204444817E+00, \ 0.6068261510845583E+00, \ 0.5410106403333613E+00, \ 0.4970679476476894E+00, \ 0.4650921887927060E+00, \ 0.4404842934597863E+00, \ 0.4207860535926143E+00, \ 0.4045507673897055E+00, \ 0.3908650337129266E+00, \ 0.2149757685421097E+00, \ 0.0000000000000000E+00, \ 0.2149757685421097E+00, \ 0.3213887739704539E+00, \ 0.3916213575531612E+00, \ 0.4437690508633213E+00, \ 0.4850700239649681E+00, \ 0.5191433267738267E+00, \ 0.5480569580144867E+00, \ 0.5731033910767085E+00, \ 0.5951442521714636E+00, \ 0.6147826594068904E+00 )) n_vec = np.array ( ( \ 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, \ 1, 1, 1, 0, 1, \ 2, 3, 4, 5, 6, \ 7, 8, 9, 10 )) t_vec = np.array ( ( \ 0.1000000000000000E+00, \ 0.1111111111111111E+00, \ 0.1250000000000000E+00, \ 0.1428571428571429E+00, \ 0.1666666666666667E+00, \ 0.2000000000000000E+00, \ 0.2500000000000000E+00, \ 0.3333333333333333E+00, \ 0.5000000000000000E+00, \ 0.6666666666666667E+00, \ 0.7500000000000000E+00, \ 0.8000000000000000E+00, \ 0.8333333333333333E+00, \ 0.8571485714857149E+00, \ 0.8750000000000000E+00, \ 0.8888888888888889E+00, \ 0.9000000000000000E+00, \ 0.9900000000000000E+00, \ 0.9900000000000000E+00, \ 0.9900000000000000E+00, \ 0.9900000000000000E+00, \ 0.9900000000000000E+00, \ 0.9900000000000000E+00, \ 0.9900000000000000E+00, \ 0.9900000000000000E+00, \ 0.9900000000000000E+00, \ 0.9900000000000000E+00, \ 0.9900000000000000E+00, \ 0.9900000000000000E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 t = 0.0 n = 0 f = 0.0 else: t = t_vec[n_data] n = n_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, t, n, f def log_series_cdf_values_test ( ): #*****************************************************************************80 # ## LOG_SERIES_CDF_VALUES_TEST demonstrates the use of LOG_SERIES_CDF_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 February 2015 # # Author: # # John Burkardt # print '' print 'LOG_SERIES_CDF_VALUES_TEST:' print ' LOG_SERIES_CDF_VALUES stores values of the LOG_SERIES_CDF function.' print '' print ' T N LOG_SERIES_CDF(T,N)' print '' n_data = 0 while ( True ): n_data, t, n, f = log_series_cdf_values ( n_data ) if ( n_data == 0 ): break print ' %12f %6d %24.16f' % ( t, n, f ) print '' print 'LOG_SERIES_CDF_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) log_series_cdf_values_test ( ) timestamp ( )