#!/usr/bin/env python # def logarithmic_integral_values ( n_data ): #*****************************************************************************80 # ## LOGARITHMIC_INTEGRAL_VALUES returns values of the logarithmic integral LI(X). # # Discussion: # # The logarithmic integral is defined as: # # LI(X) = integral ( 0 <= T <= Z ) dT / log ( T ) # # The principal value of the integral is taken. There is a # branch cut discontinuity in the complex plane from -infinity # to +1. # # Abramowitz and Stegun assume 1 < X. # # In Mathematica, the function can be evaluated by: # # LogIntegral[x] # # There is a simple relationship with the exponential integral EI: # # LI(X) = EI(LN(X)) # # The function LI(X) provides a good approximation to PI(X), # the number of primes less than or equal to X. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, the argument of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 28 f_vec = np.array ( ( \ 0.0000000000000000E+00, \ -0.3238978959329102E-01, \ -0.8512648672879405E-01, \ -0.1574149028946895E+00, \ -0.2529494192126213E+00, \ -0.3786710430610880E+00, \ -0.5468514142104170E+00, \ -0.7809468775455607E+00, \ -0.1134011957382327E+01, \ -0.1775800683423525E+01, \ -0.2443622553873225E+01, \ -0.3124190050507211E+01, \ -0.2872935510329120E+01, \ -0.2164282524138207E+01, \ -0.1440351296279408E+01, \ -0.6864884538258716E+00, \ 0.1250649863152964E+00, \ 0.1045163780117493E+01, \ 0.2967585095039051E+01, \ 0.5253718299558931E+01, \ 0.8519716463711059E+01, \ 0.1360509217709172E+02, \ 0.2193466832805100E+02, \ 0.3604254831722944E+02, \ 0.6051306533791733E+02, \ 0.1037211171690373E+03, \ 0.1810780396816945E+03, \ 0.3211144156746837E+03 )) x_vec = np.array ( ( \ 0.000000E+00, \ 0.100000E+00, \ 0.200000E+00, \ 0.300000E+00, \ 0.400000E+00, \ 0.500000E+00, \ 0.600000E+00, \ 0.700000E+00, \ 0.800000E+00, \ 0.900000E+00, \ 0.950000E+00, \ 0.975000E+00, \ 0.103125E+01, \ 0.106250E+01, \ 0.112500E+01, \ 0.125000E+01, \ 0.150000E+01, \ 0.200000E+01, \ 0.400000E+01, \ 0.800000E+01, \ 0.160000E+02, \ 0.320000E+02, \ 0.640000E+02, \ 0.128000E+03, \ 0.256000E+03, \ 0.512000E+03, \ 0.102400E+04, \ 0.204800E+04 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 f = 0.0 else: x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, x, f def logarithmic_integral_values_test ( ): #*****************************************************************************80 # ## LOGARITHMIC_INTEGRAL_VALUES_TEST demonstrates the use of LOGARITHMIC_INTEGRAL_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 February 2015 # # Author: # # John Burkardt # print '' print 'LOGARITHMIC_INTEGRAL_VALUES_TEST:' print ' LOGARITHMIC_INTEGRAL_VALUES stores values of the LOGARITHMIC_INTEGRAL function.' print '' print ' X LOGARITHMIC_INTEGRAL(X)' print '' n_data = 0 while ( True ): n_data, x, f = logarithmic_integral_values ( n_data ) if ( n_data == 0 ): break print ' %12f %24.16f' % ( x, f ) print '' print 'LOGARITHMIC_INTEGRAL_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) logarithmic_integral_values_test ( ) timestamp ( )