#!/usr/bin/env python # def negative_binomial_cdf_values ( n_data ): #*****************************************************************************80 # ## NEGATIVE_BINOMIAL_CDF_VALUES returns values of the negative binomial CDF. # # Discussion: # # Assume that a coin has a probability P of coming up heads on # any one trial. Suppose that we plan to flip the coin until we # achieve a total of S heads. If we let F represent the number of # tails that occur in this process, then the value of F satisfies # a negative binomial PDF: # # PDF(F,S,P) = Choose ( F from F+S-1 ) * P^S * (1-P)^F # # The negative binomial CDF is the probability that there are F or # fewer failures upon the attainment of the S-th success. Thus, # # CDF(F,S,P) = sum ( 0 <= G <= F ) PDF(G,S,P) # # In Mathematica, the function can be evaluated by: # # Needs["Statistics`DiscreteDistributions`] # dist = NegativeBinomialDistribution [ s, p ] # CDF [ dist, f ] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 February 2015 # # Author: # # John Burkardt # # Reference: # # F C Powell, # Statistical Tables for Sociology, Biology and Physical Sciences, # Cambridge University Press, 1982. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer F, the maximum number of failures. # # Output, integer S, the number of successes. # # Output, real P, the probability of a success on one trial. # # Output, real CDF, the probability of at most F failures # before the S-th success. # import numpy as np n_max = 27 cdf_vec = np.array ( ( \ 0.6367187500000000E+00, \ 0.3632812500000000E+00, \ 0.1445312500000000E+00, \ 0.5000000000000000E+00, \ 0.2265625000000000E+00, \ 0.6250000000000000E-01, \ 0.3437500000000000E+00, \ 0.1093750000000000E+00, \ 0.1562500000000000E-01, \ 0.1792000000000000E+00, \ 0.4096000000000000E-01, \ 0.4096000000000000E-02, \ 0.7047000000000000E-01, \ 0.1093500000000000E-01, \ 0.7290000000000000E-03, \ 0.9861587127990000E+00, \ 0.9149749500510000E+00, \ 0.7471846521450000E+00, \ 0.8499053647030009E+00, \ 0.5497160941090026E+00, \ 0.2662040052146710E+00, \ 0.6513215599000000E+00, \ 0.2639010709000000E+00, \ 0.7019082640000000E-01, \ 0.1000000000000000E+01, \ 0.1990000000000000E-01, \ 0.1000000000000000E-03 )) f_vec = np.array ( ( \ 4, 3, 2, \ 3, 2, 1, \ 2, 1, 0, \ 2, 1, 0, \ 2, 1, 0, \ 11, 10, 9, \ 17, 16, 15, \ 9, 8, 7, \ 2, 1, 0 )) p_vec = np.array ( ( \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.40E+00, \ 0.40E+00, \ 0.40E+00, \ 0.30E+00, \ 0.30E+00, \ 0.30E+00, \ 0.30E+00, \ 0.30E+00, \ 0.30E+00, \ 0.10E+00, \ 0.10E+00, \ 0.10E+00, \ 0.10E+00, \ 0.10E+00, \ 0.10E+00, \ 0.10E-01, \ 0.10E-01, \ 0.10E-01 )) s_vec = np.array ( ( \ 4, 5, 6, \ 4, 5, 6, \ 4, 5, 6, \ 4, 5, 6, \ 4, 5, 6, \ 1, 2, 3, \ 1, 2, 3, \ 1, 2, 3, \ 0, 1, 2 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 f = 0 s = 0 p = 0.0 cdf = 0.0 else: f = f_vec[n_data] s = s_vec[n_data] p = p_vec[n_data] cdf = cdf_vec[n_data] n_data = n_data + 1 return n_data, f, s, p, cdf def negative_binomial_cdf_values_test ( ): #*****************************************************************************80 # ## NEGATIVE_BINOMIAL_CDF_VALUES_TEST demonstrates the use of NEGATIVE_BINOMIAL_CDF_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 February 2015 # # Author: # # John Burkardt # print '' print 'NEGATIVE_BINOMIAL_CDF_VALUES_TEST:' print ' NEGATIVE_BINOMIAL_CDF_VALUES stores values of the unit normal CDF.' print '' print ' F S P CDF()' print '' n_data = 0 while ( True ): n_data, f, s, p, cdf = negative_binomial_cdf_values ( n_data ) if ( n_data == 0 ): break print ' %6d %6d %12f %24.16f' % ( f, s, p, cdf ) print '' print 'NEGATIVE_BINOMIAL_CDF_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) negative_binomial_cdf_values_test ( ) timestamp ( )