#!/usr/bin/env python # def owen_values ( n_data ): #*****************************************************************************80 # ## OWEN_VALUES returns some values of Owen's T function. # # Discussion: # # Owen's T function is useful for computation of the bivariate normal # distribution and the distribution of a skewed normal distribution. # # Although it was originally formulated in terms of the bivariate # normal function, the function can be defined more directly as # # T(H,A) = 1 / ( 2 * pi ) * # Integral ( 0 <= X <= A ) e^(H^2*(1+X^2)/2) / (1+X^2) dX # # In Mathematica, the function can be evaluated by: # # fx = 1/(2*Pi) * Integrate [ E^(-h^2*(1+x^2)/2)/(1+x^2), {x,0,a} ] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 February 2015 # # Author: # # John Burkardt # # Reference: # # Mike Patefield, David Tandy, # Fast and Accurate Calculation of Owen's T Function, # Journal of Statistical Software, # Volume 5, Number 5, 2000, pages 1-25. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real H, a parameter. # # Output, real A, the upper limit of the integral. # # Output, real T, the value of the function. # import numpy as np n_max = 28 a_vec = np.array ( ( \ 0.2500000000000000E+00, \ 0.4375000000000000E+00, \ 0.9687500000000000E+00, \ 0.0625000000000000E+00, \ 0.5000000000000000E+00, \ 0.9999975000000000E+00, \ 0.5000000000000000E+00, \ 0.1000000000000000E+01, \ 0.2000000000000000E+01, \ 0.3000000000000000E+01, \ 0.5000000000000000E+00, \ 0.1000000000000000E+01, \ 0.2000000000000000E+01, \ 0.3000000000000000E+01, \ 0.5000000000000000E+00, \ 0.1000000000000000E+01, \ 0.2000000000000000E+01, \ 0.3000000000000000E+01, \ 0.5000000000000000E+00, \ 0.1000000000000000E+01, \ 0.2000000000000000E+01, \ 0.3000000000000000E+01, \ 0.5000000000000000E+00, \ 0.1000000000000000E+01, \ 0.2000000000000000E+01, \ 0.3000000000000000E+01, \ 0.1000000000000000E+02, \ 0.1000000000000000E+03 )) h_vec = np.array ( ( \ 0.0625000000000000E+00, \ 6.5000000000000000E+00, \ 7.0000000000000000E+00, \ 4.7812500000000000E+00, \ 2.0000000000000000E+00, \ 1.0000000000000000E+00, \ 0.1000000000000000E+01, \ 0.1000000000000000E+01, \ 0.1000000000000000E+01, \ 0.1000000000000000E+01, \ 0.5000000000000000E+00, \ 0.5000000000000000E+00, \ 0.5000000000000000E+00, \ 0.5000000000000000E+00, \ 0.2500000000000000E+00, \ 0.2500000000000000E+00, \ 0.2500000000000000E+00, \ 0.2500000000000000E+00, \ 0.1250000000000000E+00, \ 0.1250000000000000E+00, \ 0.1250000000000000E+00, \ 0.1250000000000000E+00, \ 0.7812500000000000E-02, \ 0.7812500000000000E-02, \ 0.7812500000000000E-02, \ 0.7812500000000000E-02, \ 0.7812500000000000E-02, \ 0.7812500000000000E-02 )) t_vec = np.array ( ( \ 3.8911930234701366E-02, \ 2.0005773048508315E-11, \ 6.3990627193898685E-13, \ 1.0632974804687463E-07, \ 8.6250779855215071E-03, \ 6.6741808978228592E-02, \ 0.4306469112078537E-01, \ 0.6674188216570097E-01, \ 0.7846818699308410E-01, \ 0.7929950474887259E-01, \ 0.6448860284750376E-01, \ 0.1066710629614485E+00, \ 0.1415806036539784E+00, \ 0.1510840430760184E+00, \ 0.7134663382271778E-01, \ 0.1201285306350883E+00, \ 0.1666128410939293E+00, \ 0.1847501847929859E+00, \ 0.7317273327500385E-01, \ 0.1237630544953746E+00, \ 0.1737438887583106E+00, \ 0.1951190307092811E+00, \ 0.7378938035365546E-01, \ 0.1249951430754052E+00, \ 0.1761984774738108E+00, \ 0.1987772386442824E+00, \ 0.2340886964802671E+00, \ 0.2479460829231492E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 t = 0.0 h = 0.0 a = 0.0 else: t = t_vec[n_data] h = h_vec[n_data] a = a_vec[n_data] n_data = n_data + 1 return n_data, h, a, t def owen_values_test ( ): #*****************************************************************************80 # ## OWEN_VALUES_TEST demonstrates the use of OWEN_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 January 2015 # # Author: # # John Burkardt # print '' print 'OWEN_VALUES_TEST:' print ' OWEN_VALUES stores values of the OWEN function.' print '' print ' H A T' print '' n_data = 0 while ( True ): n_data, h, a, t = owen_values ( n_data ) if ( n_data == 0 ): break print ' %12f %12f %12f' % ( h, a, t ) print '' print 'OWEN_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) owen_values_test ( ) timestamp ( )