#!/usr/bin/env python # def poisson_cdf_values ( n_data ): #*****************************************************************************80 # ## POISSON_CDF_VALUES returns some values of the Poisson CDF. # # Discussion: # # CDF(X)(A) is the probability of at most X successes in unit time, # given that the expected mean number of successes is A. # # In Mathematica, the function can be evaluated by: # # Needs["Statistics`DiscreteDistributions`] # dist = PoissonDistribution [ a ] # CDF [ dist, x ] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Daniel Zwillinger, # CRC Standard Mathematical Tables and Formulae, # 30th Edition, CRC Press, 1996, pages 653-658. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real A, the parameter of the function. # # Output, integer X, the argument of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 21 a_vec = np.array ( ( \ 0.02E+00, \ 0.10E+00, \ 0.10E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 1.00E+00, \ 1.00E+00, \ 1.00E+00, \ 1.00E+00, \ 2.00E+00, \ 2.00E+00, \ 2.00E+00, \ 2.00E+00, \ 5.00E+00, \ 5.00E+00, \ 5.00E+00, \ 5.00E+00, \ 5.00E+00, \ 5.00E+00, \ 5.00E+00 )) f_vec = np.array ( ( \ 0.9801986733067553E+00, \ 0.9048374180359596E+00, \ 0.9953211598395555E+00, \ 0.6065306597126334E+00, \ 0.9097959895689501E+00, \ 0.9856123220330293E+00, \ 0.3678794411714423E+00, \ 0.7357588823428846E+00, \ 0.9196986029286058E+00, \ 0.9810118431238462E+00, \ 0.1353352832366127E+00, \ 0.4060058497098381E+00, \ 0.6766764161830635E+00, \ 0.8571234604985470E+00, \ 0.6737946999085467E-02, \ 0.4042768199451280E-01, \ 0.1246520194830811E+00, \ 0.2650259152973617E+00, \ 0.4404932850652124E+00, \ 0.6159606548330631E+00, \ 0.7621834629729387E+00 )) x_vec = np.array ( ( \ 0, 0, 1, 0, \ 1, 2, 0, 1, \ 2, 3, 0, 1, \ 2, 3, 0, 1, \ 2, 3, 4, 5, \ 6 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 a = 0.0 x = 0.0 f = 0.0 else: a = a_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, a, x, f def poisson_cdf_values_test ( ): #*****************************************************************************80 # ## POISSON_CDF_VALUES_TEST demonstrates the use of POISSON_CDF_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 February 2015 # # Author: # # John Burkardt # print '' print 'POISSON_CDF_VALUES_TEST:' print ' POISSON_CDF_VALUES stores values of the Gegenbauer polynomials.' print '' print ' A X FX' print '' n_data = 0 while ( True ): n_data, a, x, fx = poisson_cdf_values ( n_data ) if ( n_data == 0 ): break print ' %12f %12f %24.16g' % ( a, x, fx ) print '' print 'POISSON_CDF_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) poisson_cdf_values_test ( ) timestamp ( )