#!/usr/bin/env python # def polylogarithm_values ( n_data ): #*****************************************************************************80 # ## POLYLOGARITHM_VALUES returns some values of the polylogarithm. # # Discussion: # # The polylogarithm of n and z is defined as # # f[n,z] = Sum ( 1 <= k < infinity ) z^k / k^n # # In Mathematica, the function can be evaluated by: # # PolyLog[n,z] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 February 2015 # # Author: # # John Burkardt # # Reference: # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N, the exponent of the denominator. # # Output, real Z, the base of the numerator. # # Output, real F, the value of the function. # import numpy as np n_max = 12 f_vec = np.array ( ( \ 0.1644934066848226E+01, \ 0.1202056903159594E+01, \ 0.1000994575127818E+01, \ 0.5822405264650125E+00, \ 0.5372131936080402E+00, \ 0.5002463206060068E+00, \ 0.3662132299770635E+00, \ 0.3488278611548401E+00, \ 0.3334424797228716E+00, \ 0.1026177910993911E+00, \ 0.1012886844792230E+00, \ 0.1000097826564961E+00 )) n_vec = np.array ( ( \ 2, 3, 10, 2, 3, 10, 2, 3, 10, 2, 3, 10 )) z_vec = np.array ( ( \ 0.1000000000000000E+01, \ 0.1000000000000000E+01, \ 0.1000000000000000E+01, \ 0.5000000000000000E+00, \ 0.5000000000000000E+00, \ 0.5000000000000000E+00, \ 0.3333333333333333E+00, \ 0.3333333333333333E+00, \ 0.3333333333333333E+00, \ 0.1000000000000000E+00, \ 0.1000000000000000E+00, \ 0.1000000000000000E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0 z = 0.0 f = 0.0 else: n = n_vec[n_data] z = z_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, n, z, f def polylogarithm_values_test ( ): #*****************************************************************************80 # ## POLYLOGARITHM_VALUES_TEST demonstrates the use of POLYLOGARITHM_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 February 2015 # # Author: # # John Burkardt # print '' print 'POLYLOGARITHM_VALUES_TEST:' print ' POLYLOGARITHM_VALUES stores values of the Gegenbauer polynomials.' print '' print ' N Z F' print '' n_data = 0 while ( True ): n_data, n, z, f = polylogarithm_values ( n_data ) if ( n_data == 0 ): break print ' %6d %12f %24.16g' % ( n, z, f ) print '' print 'POLYLOGARITHM_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) polylogarithm_values_test ( ) timestamp ( )