#!/usr/bin/env python # def sigma_values ( n_data ): #*****************************************************************************80 # ## SIGMA_VALUES returns some values of the Sigma function. # # Discussion: # # SIGMA(N) is the sum of the distinct divisors of N, including 1 and N. # # In Mathematica, the function can be evaluated by: # # DivisorSigma[1,n] # # First values: # # N SIGMA(N) # # 1 1 # 2 3 # 3 4 # 4 7 # 5 6 # 6 12 # 7 8 # 8 15 # 9 13 # 10 18 # 11 12 # 12 28 # 13 14 # 14 24 # 15 24 # 16 31 # 17 18 # 18 39 # 19 20 # 20 42 # # Formula: # # SIGMA(U*V) = SIGMA(U) * SIGMA(V) if U and V are relatively prime. # # SIGMA(P^K) = ( P^(K+1) - 1 ) / ( P - 1 ) if P is prime. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 21 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N, the argument of the Sigma function. # # Output, integer C, the value of the Sigma function. # import numpy as np n_max = 20 c_vec = np.array ( ( \ 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, \ 72, 128, 255, 176, 576, 1170, 618, 984, 2232, 2340 )) n_vec = np.array ( ( \ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \ 30, 127, 128, 129, 210, 360, 617, 815, 816, 1000 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0 c = 0 else: n = n_vec[n_data] c = c_vec[n_data] n_data = n_data + 1 return n_data, n, c def sigma_values_test ( ): #*****************************************************************************80 # ## SIGMA_VALUES_TEST demonstrates the use of SIGMA_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 21 February 2015 # # Author: # # John Burkardt # print '' print 'SIGMA_VALUES_TEST:' print ' SIGMA_VALUES stores values of the SIGMA function.' print '' print ' N SIGMA(N)' print '' n_data = 0 while ( True ): n_data, n, c = sigma_values ( n_data ) if ( n_data == 0 ): break print ' %12d %12d' % ( n, c ) print '' print 'SIGMA_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) sigma_values_test ( ) timestamp ( )