#!/usr/bin/env python # def sin_power_int_values ( n_data ): #*****************************************************************************80 # ## SIN_POWER_INT_VALUES returns some values of the sine power integral. # # Discussion: # # The function has the form # # SIN_POWER_INT(A,B,N) = Integral ( A <= T <= B ) ( sin(T) )^N dt # # In Mathematica, the function can be evaluated by: # # Integrate [ ( Sin[x] )^n, { x, a, b } ] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 21 February 2015 # # Author: # # John Burkardt # # Reference: # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real A, B, the limits of integration. # # Output, integer N, the power. # # Output, real F, the value of the function. # import numpy as np n_max = 10 a_vec = np.array ( ( \ 0.10E+02, \ 0.00E+00, \ 0.00E+00, \ 0.00E+00, \ 0.00E+00, \ 0.00E+00, \ 0.00E+00, \ 0.10E+01, \ 0.00E+00, \ 0.00E+00 )) b_vec = np.array ( ( \ 0.20E+02, \ 0.10E+01, \ 0.10E+01, \ 0.10E+01, \ 0.10E+01, \ 0.10E+01, \ 0.20E+01, \ 0.20E+01, \ 0.10E+01, \ 0.10E+01 )) f_vec = np.array ( ( \ 0.10000000000000000000E+02, \ 0.45969769413186028260E+00, \ 0.27267564329357957615E+00, \ 0.17894056254885809051E+00, \ 0.12402556531520681830E+00, \ 0.88974396451575946519E-01, \ 0.90393123848149944133E+00, \ 0.81495684202992349481E+00, \ 0.21887522421729849008E-01, \ 0.17023439374069324596E-01 )) n_vec = np.array ( ( \ 0, \ 1, \ 2, \ 3, \ 4, \ 5, \ 5, \ 5, \ 10, \ 11 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 a = 0.0 b = 0.0 f = 0.0 n = 0 else: a = a_vec[n_data] b = b_vec[n_data] f = f_vec[n_data] n = n_vec[n_data] n_data = n_data + 1 return n_data, a, b, n, f def sin_power_int_values_test ( ): #*****************************************************************************80 # ## SIN_POWER_INT_VALUES_TEST tests SIN_POWER_INT_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 21 February 2015 # # Author: # # John Burkardt # print '' print 'SIN_POWER_INT_VALUES_TEST:' print ' SIN_POWER_INT_VALUES stores values of the cosine power integral.' print '' print ' A B N F' print '' n_data = 0 while ( True ): n_data, a, b, n, f = sin_power_int_values ( n_data ) if ( n_data == 0 ): break print ' %12f %12f %6d %24.16g' % ( a, b, n, f ) print '' print 'SIN_POWER_INT_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) sin_power_int_values_test ( ) timestamp ( )