#!/usr/bin/env python # def sphere_unit_area_values ( n_data ): #*****************************************************************************80 # ## SPHERE_UNIT_AREA_VALUES returns some areas of the unit sphere in ND. # # Discussion: # # The formula for the surface area of the unit sphere in N dimensions is: # # Sphere_Unit_Area ( N ) = 2 * PI^(N/2) / Gamma ( N / 2 ) # # Some values of the function include: # # N Area # # 2 2 * PI # 3 ( 4 / ) * PI # 4 ( 2 / 1) * PI^2 # 5 ( 8 / 3) * PI^2 # 6 ( 1 / 1) * PI^3 # 7 (16 / 15) * PI^3 # 8 ( 1 / 3) * PI^4 # 9 (32 / 105) * PI^4 # 10 ( 1 / 12) * PI^5 # # For the unit sphere, Area(N) = N * Volume(N) # # In Mathematica, the function can be evaluated by: # # 2 * Pi^(n/2) / Gamma[n/2] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 21 February 2015 # # Author: # # John Burkardt # # Reference: # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. # On input, if N_DATA is 0, the first test data is returned, and # N_DATA is set to the index of the test data. On each subsequent # call, N_DATA is incremented and that test data is returned. When # there is no more test data, N_DATA is set to 0. # # Output, integer N, the spatial dimension. # # Output, real AREA, the area of the unit sphere # in that dimension. # import numpy as np n_max = 20 area_vec = np.array ( ( \ 0.2000000000000000E+01, \ 0.6283185307179586E+01, \ 0.1256637061435917E+02, \ 0.1973920880217872E+02, \ 0.2631894506957162E+02, \ 0.3100627668029982E+02, \ 0.3307336179231981E+02, \ 0.3246969701133415E+02, \ 0.2968658012464836E+02, \ 0.2550164039877345E+02, \ 0.2072514267328890E+02, \ 0.1602315322625507E+02, \ 0.1183817381218268E+02, \ 0.8389703410491089E+01, \ 0.5721649212349567E+01, \ 0.3765290085742291E+01, \ 0.2396678817591364E+01, \ 0.1478625959000308E+01, \ 0.8858104195716824E+00, \ 0.5161378278002812E+00 )) n_vec = np.array ( ( \ 1, \ 2, \ 3, \ 4, \ 5, \ 6, \ 7, \ 8, \ 9, \ 10, \ 11, \ 12, \ 13, \ 14, \ 15, \ 16, \ 17, \ 18, \ 19, \ 20 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0.0 area = 0.0 else: n = n_vec[n_data] area = area_vec[n_data] n_data = n_data + 1 return n_data, n, area def sphere_unit_area_values_test ( ): #*****************************************************************************80 # ## SPHERE_UNIT_AREA_VALUES_TEST demonstrates the use of SPHERE_UNIT_AREA_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 21 February 2015 # # Author: # # John Burkardt # print '' print 'SPHERE_UNIT_AREA_VALUES_TEST:' print ' SPHERE_UNIT_AREA_VALUES stores values of the SPHERE_UNIT_AREA function.' print '' print ' N SPHERE_UNIT_AREA(X)' print '' n_data = 0 while ( True ): n_data, n, area = sphere_unit_area_values ( n_data ) if ( n_data == 0 ): break print ' %12d %24.16f' % ( n, area ) print '' print 'SPHERE_UNIT_AREA_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) sphere_unit_area_values_test ( ) timestamp ( )