#!/usr/bin/env python # def sphere_unit_volume_values ( n_data ): #*****************************************************************************80 # ## SPHERE_UNIT_VOLUME_VALUES returns some volumes of the unit sphere in ND. # # Discussion: # # The formula for the volume of the unit sphere in N dimensions is # # Volume(N) = 2 * PI^(N/2) / ( N * Gamma ( N / 2 ) ) # # This function satisfies the relationships: # # Volume(N) = 2 * PI * Volume(N-2) / N # Volume(N) = Area(N) / N # # Some values of the function include: # # N Volume # # 1 1 # 2 1 * PI # 3 ( 4 / 3) * PI # 4 ( 1 / 2) * PI^2 # 5 ( 8 / 15) * PI^2 # 6 ( 1 / 6) * PI^3 # 7 (16 / 105) * PI^3 # 8 ( 1 / 24) * PI^4 # 9 (32 / 945) * PI^4 # 10 ( 1 / 120) * PI^5 # # In Mathematica, the function can be evaluated by: # # 2 * Pi^(n/2) / ( n * Gamma[n/2] ) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 21 February 2015 # # Author: # # John Burkardt # # Reference: # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. # On input, if N_DATA is 0, the first test data is returned, and # N_DATA is set to the index of the test data. On each subsequent # call, N_DATA is incremented and that test data is returned. When # there is no more test data, N_DATA is set to 0. # # Output, integer N, the spatial dimension. # # Output, real VOLUME, the volume of the unit # sphere in that dimension. # import numpy as np n_max = 20 n_vec = np.array ( ( \ 1, \ 2, \ 3, \ 4, \ 5, \ 6, \ 7, \ 8, \ 9, \ 10, \ 11, \ 12, \ 13, \ 14, \ 15, \ 16, \ 17, \ 18, \ 19, \ 20 )) volume_vec = np.array ( ( \ 0.2000000000000000E+01, \ 0.3141592653589793E+01, \ 0.4188790204786391E+01, \ 0.4934802200544679E+01, \ 0.5263789013914325E+01, \ 0.5167712780049970E+01, \ 0.4724765970331401E+01, \ 0.4058712126416768E+01, \ 0.3298508902738707E+01, \ 0.2550164039877345E+01, \ 0.1884103879389900E+01, \ 0.1335262768854589E+01, \ 0.9106287547832831E+00, \ 0.5992645293207921E+00, \ 0.3814432808233045E+00, \ 0.2353306303588932E+00, \ 0.1409811069171390E+00, \ 0.8214588661112823E-01, \ 0.4662160103008855E-01, \ 0.2580689139001406E-01 )) n_vec = np.array ( ( \ 1, \ 2, \ 3, \ 4, \ 5, \ 6, \ 7, \ 8, \ 9, \ 10, \ 11, \ 12, \ 13, \ 14, \ 15, \ 16, \ 17, \ 18, \ 19, \ 20 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0.0 volume = 0.0 else: n = n_vec[n_data] volume = volume_vec[n_data] n_data = n_data + 1 return n_data, n, volume def sphere_unit_volume_values_test ( ): #*****************************************************************************80 # ## SPHERE_UNIT_VOLUME_VALUES_TEST demonstrates the use of SPHERE_UNIT_VOLUME_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 21 February 2015 # # Author: # # John Burkardt # print '' print 'SPHERE_UNIT_VOLUME_VALUES_TEST:' print ' SPHERE_UNIT_VOLUME_VALUES stores values of the SPHERE_UNIT_VOLUME function.' print '' print ' N SPHERE_UNIT_VOLUME(X)' print '' n_data = 0 while ( True ): n_data, n, volume = sphere_unit_volume_values ( n_data ) if ( n_data == 0 ): break print ' %12d %24.16f' % ( n, volume ) print '' print 'SPHERE_UNIT_VOLUME_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) sphere_unit_volume_values_test ( ) timestamp ( )