#!/usr/bin/env python # def sqrt_values ( n_data ): #*****************************************************************************80 # ## SQRT_VALUES returns some values of the square root function. # # Discussion: # # SQRT(X) = positive real number Y such that Y * Y = X. # # In Mathematica, the function can be evaluated by: # # Sqrt[x] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 January 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, the argument of the function. # # Output real F, the value of the function. # import numpy as np n_max = 14 f_vec = np.array ( ( \ 0.0000000000000000E+00, \ 0.9000000040950000E-04, \ 0.3000000000000000E+00, \ 0.3162277660168379E+00, \ 0.6324555320336759E+00, \ 0.1000000000000000E+01, \ 0.1414213562373095E+01, \ 0.1732050807568877E+01, \ 0.1772453850905516E+01, \ 0.4358898943540674E+01, \ 0.5385164807134504E+01, \ 0.8426149773176359E+01, \ 0.9848857801796105E+01, \ 0.1111111106055556E+05 ) ) x_vec = np.array ( ( \ 0.0000000000000000E+00, \ 0.8100000073710001E-08, \ 0.9000000000000000E-01, \ 0.1000000000000000E+00, \ 0.4000000000000000E+00, \ 0.1000000000000000E+01, \ 0.2000000000000000E+01, \ 0.3000000000000000E+01, \ 0.3141592653589793E+01, \ 0.1900000000000000E+02, \ 0.2900000000000000E+02, \ 0.7100000000000000E+02, \ 0.9700000000000000E+02, \ 0.1234567890000000E+09 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 f = 0.0 else: x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, x, f def sqrt_values_test ( ): #*****************************************************************************80 # ## SQRT_VALUES_TEST demonstrates the use of SQRT_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 January 2015 # # Author: # # John Burkardt # print '' print 'SQRT_VALUES_TEST:' print ' SQRT_VALUES stores values of the SQRT function.' print '' print ' X SQRT(X)' print '' n_data = 0 while ( True ): n_data, x, f = sqrt_values ( n_data ) if ( n_data == 0 ): break print ' %12f %24.16f' % ( x, f ) print '' print 'SQRT_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) sqrt_values_test ( ) timestamp ( )