#!/usr/bin/env python # def stirling1_values ( n_data ): #*****************************************************************************80 # ## STIRLING1_VALUES returns some values of the Stirling numbers, kind 1. # # Discussion: # # The absolute value of the Stirling number S1(N,M) gives the number # of permutations on N objects having exactly M cycles, while the # sign of the Stirling number records the sign (odd or even) of # the permutations. For example, there are six permutations on 3 objects: # # A B C 3 cycles (A) (B) (C) # A C B 2 cycles (A) (BC) # B A C 2 cycles (AB) (C) # B C A 1 cycle (ABC) # C A B 1 cycle (ABC) # C B A 2 cycles (AC) (B) # # There are # # 2 permutations with 1 cycle, and S1(3,1) = 2 # 3 permutations with 2 cycles, and S1(3,2) = -3, # 1 permutation with 3 cycles, and S1(3,3) = 1. # # Since there are N! permutations of N objects, the sum of the absolute # values of the Stirling numbers in a given row, # # sum ( 1 <= I <= N ) abs ( S1(N,I) ) = N! # # First terms: # # N/M: 1 2 3 4 5 6 7 8 # # 1 1 0 0 0 0 0 0 0 # 2 -1 1 0 0 0 0 0 0 # 3 2 -3 1 0 0 0 0 0 # 4 -6 11 -6 1 0 0 0 0 # 5 24 -50 35 -10 1 0 0 0 # 6 -120 274 -225 85 -15 1 0 0 # 7 720 -1764 1624 -735 175 -21 1 0 # 8 -5040 13068 -13132 6769 -1960 322 -28 1 # # In Mathematica, the function can be evaluated by: # # StirlingS1[n,m] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N, M, the arguments of the function. # # Output, integer F, the value of the function. # import numpy as np n_max = 16 f_vec = np.array ( ( \ 0, \ 1, \ -3, \ 11, \ -50, \ 274, \ -1764, \ 13068, \ -109584, \ 1026576, \ -13132, \ 6769, \ -1960, \ 322, \ -28, \ 1 )) m_vec = np.array ( ( \ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 5, 6, 7, 8 )) n_vec = np.array ( ( \ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 8, 8, 8, 8, 8, 8 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0 m = 0 f = 0 else: n = n_vec[n_data] m = m_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, n, m, f def stirling1_values_test ( ): #*****************************************************************************80 # ## STIRLING1_VALUES_TEST demonstrates the use of STIRLING1_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # print '' print 'STIRLING1_VALUES_TEST:' print ' STIRLING1_VALUES stores values of the STIRLING1 function.' print '' print ' N M STIRLING1(N,M)' print '' n_data = 0 while ( True ): n_data, n, m, f = stirling1_values ( n_data ) if ( n_data == 0 ): break print ' %12d %12d %12d' % ( n, m, f ) print '' print 'STIRLING1_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) stirling1_values_test ( ) timestamp ( )