#!/usr/bin/env python # def stirling2_values ( n_data ): #*****************************************************************************80 # ## STIRLING2_VALUES returns some values of the Stirling numbers, kind 2. # # Discussion: # # S2(N,M) represents the number of distinct partitions of N elements # into M nonempty sets. For a fixed N, the sum of the Stirling # numbers S2(N,M) is represented by B(N), called "Bell's number", # and represents the number of distinct partitions of N elements. # # For example, with 4 objects, there are: # # 1 partition into 1 set: # # (A,B,C,D) # # 7 partitions into 2 sets: # # (A,B,C) (D) # (A,B,D) (C) # (A,C,D) (B) # (A) (B,C,D) # (A,B) (C,D) # (A,C) (B,D) # (A,D) (B,C) # # 6 partitions into 3 sets: # # (A,B) (C) (D) # (A) (B,C) (D) # (A) (B) (C,D) # (A,C) (B) (D) # (A,D) (B) (C) # (A) (B,D) (C) # # 1 partition into 4 sets: # # (A) (B) (C) (D) # # So S2(4,1) = 1, S2(4,2) = 7, S2(4,3) = 6, S2(4,4) = 1, and B(4) = 15. # # # First terms: # # N/M: 1 2 3 4 5 6 7 8 # # 1 1 0 0 0 0 0 0 0 # 2 1 1 0 0 0 0 0 0 # 3 1 3 1 0 0 0 0 0 # 4 1 7 6 1 0 0 0 0 # 5 1 15 25 10 1 0 0 0 # 6 1 31 90 65 15 1 0 0 # 7 1 63 301 350 140 21 1 0 # 8 1 127 966 1701 1050 266 28 1 # # In Mathematica, the function can be evaluated by: # # StirlingS2[n,m] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N, M, the arguments of the function. # # Output, integer F, the value of the function. # import numpy as np n_max = 16 f_vec = np.array ( ( \ 0, \ 1, \ 3, \ 7, \ 15, \ 31, \ 63, \ 127, \ 255, \ 511, \ 966, \ 1701, \ 1050, \ 266, \ 28, \ 1 )) m_vec = np.array ( ( \ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 5, 6, 7, 8 )) n_vec = np.array ( ( \ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 8, 8, 8, 8, 8, 8 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0 m = 0 f = 0 else: n = n_vec[n_data] m = m_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, n, m, f def stirling2_values_test ( ): #*****************************************************************************80 # ## STIRLING2_VALUES_TEST demonstrates the use of STIRLING2_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # print '' print 'STIRLING2_VALUES_TEST:' print ' STIRLING2_VALUES stores values of the STIRLING2 function.' print '' print ' N M STIRLING2(N,M)' print '' n_data = 0 while ( True ): n_data, n, m, f = stirling2_values ( n_data ) if ( n_data == 0 ): break print ' %12d %12d %12d' % ( n, m, f ) print '' print 'STIRLING2_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) stirling2_values_test ( ) timestamp ( )