#!/usr/bin/env python # def struve_h0_values ( n_data ): #*****************************************************************************80 # ## STRUVE_H0_VALUES returns some values of the Struve H0 function. # # Discussion: # # The function is defined by: # # HO(x) = 2/pi * Integral ( 0 <= t <= pi/2 ) sin ( x * cos ( t ) ) dt # # In Mathematica, the function can be evaluated by: # # StruveH[0,x] # # The data was reported by McLeod. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Allan McLeod, # Algorithm 757, MISCFUN: A software package to compute uncommon # special functions, # ACM Transactions on Mathematical Software, # Volume 22, Number 3, September 1996, pages 288-301. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, the argument of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 20 f_vec = np.array ( ( \ 0.12433974658847434366E-02, \ -0.49735582423748415045E-02, \ 0.39771469054536941564E-01, \ -0.15805246001653314198E+00, \ 0.56865662704828795099E+00, \ 0.66598399314899916605E+00, \ 0.79085884950809589255E+00, \ -0.13501457342248639716E+00, \ 0.20086479668164503137E+00, \ -0.11142097800261991552E+00, \ -0.17026804865989885869E+00, \ -0.13544931808186467594E+00, \ 0.94393698081323450897E-01, \ -0.10182482016001510271E+00, \ 0.96098421554162110012E-01, \ -0.85337674826118998952E-01, \ -0.76882290637052720045E-01, \ 0.47663833591418256339E-01, \ -0.70878751689647343204E-01, \ 0.65752908073352785368E-01 )) x_vec = np.array ( ( \ 0.0019531250E+00, \ -0.0078125000E+00, \ 0.0625000000E+00, \ -0.2500000000E+00, \ 1.0000000000E+00, \ 1.2500000000E+00, \ 2.0000000000E+00, \ -4.0000000000E+00, \ 7.5000000000E+00, \ 11.0000000000E+00, \ 11.5000000000E+00, \ -16.0000000000E+00, \ 20.0000000000E+00, \ 25.0000000000E+00, \ -30.0000000000E+00, \ 50.0000000000E+00, \ 75.0000000000E+00, \ -80.0000000000E+00, \ 100.0000000000E+00, \ -125.0000000000E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 f = 0.0 else: x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, x, f def struve_h0_values_test ( ): #*****************************************************************************80 # ## STRUVE_H0_VALUES_TEST demonstrates the use of STRUVE_H0_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # print '' print 'STRUVE_H0_VALUES_TEST:' print ' STRUVE_H0_VALUES stores values of the STRUVE_H0 function.' print '' print ' X STRUVE_H0(X)' print '' n_data = 0 while ( True ): n_data, x, f = struve_h0_values ( n_data ) if ( n_data == 0 ): break print ' %12f %24.16f' % ( x, f ) print '' print 'STRUVE_H0_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) struve_h0_values_test ( ) timestamp ( )