#!/usr/bin/env python # def struve_h1_values ( n_data ): #*****************************************************************************80 # ## STRUVE_H1_VALUES returns some values of the Struve H1 function. # # Discussion: # # The function is defined by: # # H1(x) = 2*x/pi * Integral ( 0 <= t <= pi/2 ) # sin ( x * cos ( t ) )^2 * sin ( t ) dt # # In Mathematica, the function can be evaluated by: # # StruveH[1,x] # # The data was reported by McLeod. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Allan McLeod, # Algorithm 757, MISCFUN: A software package to compute uncommon # special functions, # ACM Transactions on Mathematical Software, # Volume 22, Number 3, September 1996, pages 288-301. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, the argument of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 20 f_vec = np.array ( ( \ 0.80950369576367526071E-06, \ 0.12952009724113229165E-04, \ 0.82871615165407083021E-03, \ 0.13207748375849572564E-01, \ 0.19845733620194439894E+00, \ 0.29853823231804706294E+00, \ 0.64676372828356211712E+00, \ 0.10697266613089193593E+01, \ 0.38831308000420560970E+00, \ 0.74854243745107710333E+00, \ 0.84664854642567359993E+00, \ 0.58385732464244384564E+00, \ 0.80600584524215772824E+00, \ 0.53880362132692947616E+00, \ 0.72175037834698998506E+00, \ 0.58007844794544189900E+00, \ 0.60151910385440804463E+00, \ 0.70611511147286827018E+00, \ 0.61631110327201338454E+00, \ 0.62778480765443656489E+00 )) x_vec = np.array ( ( \ 0.0019531250E+00, \ -0.0078125000E+00, \ 0.0625000000E+00, \ -0.2500000000E+00, \ 1.0000000000E+00, \ 1.2500000000E+00, \ 2.0000000000E+00, \ -4.0000000000E+00, \ 7.5000000000E+00, \ 11.0000000000E+00, \ 11.5000000000E+00, \ -16.0000000000E+00, \ 20.0000000000E+00, \ 25.0000000000E+00, \ -30.0000000000E+00, \ 50.0000000000E+00, \ 75.0000000000E+00, \ -80.0000000000E+00, \ 100.0000000000E+00, \ -125.0000000000E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 f = 0.0 else: x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, x, f def struve_h1_values_test ( ): #*****************************************************************************80 # ## STRUVE_H1_VALUES_TEST demonstrates the use of STRUVE_H1_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # print '' print 'STRUVE_H1_VALUES_TEST:' print ' STRUVE_H1_VALUES stores values of the STRUVE_H1 function.' print '' print ' X STRUVE_H1(X)' print '' n_data = 0 while ( True ): n_data, x, f = struve_h1_values ( n_data ) if ( n_data == 0 ): break print ' %12f %24.16f' % ( x, f ) print '' print 'STRUVE_H1_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) struve_h1_values_test ( ) timestamp ( )