#!/usr/bin/env python # def struve_l1_values ( n_data ): #*****************************************************************************80 # ## STRUVE_L1_VALUES returns some values of the Struve L1 function. # # Discussion: # # In Mathematica, the function can be evaluated by: # # StruveL[1,x] # # The data was reported by McLeod. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Allan McLeod, # Algorithm 757, MISCFUN: A software package to compute uncommon # special functions, # ACM Transactions on Mathematical Software, # Volume 22, Number 3, September 1996, pages 288-301. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, the argument of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 20 f_vec = np.array ( ( \ 0.80950410749865126939E-06, \ 0.20724649092571514607E-03, \ 0.33191834066894516744E-02, \ 0.53942182623522663292E-01, \ 0.22676438105580863683E+00, \ 0.11027597873677158176E+01, \ 0.91692778117386847344E+01, \ 0.15541656652426660966E+03, \ 0.26703582852084829694E+04, \ 0.86505880175304633906E+06, \ 0.11026046613094942620E+07, \ 0.22846209494153934787E+07, \ 0.42454972750111979449E+08, \ 0.48869614587997695539E+09, \ 0.56578651292431051863E+10, \ 0.76853203893832108948E+12, \ 0.14707396163259352103E+17, \ 0.29030785901035567967E+21, \ 0.58447515883904682813E+25, \ 0.11929750788892311875E+30 )) x_vec = np.array ( ( \ 0.0019531250E+00, \ -0.0078125000E+00, \ 0.0625000000E+00, \ -0.2500000000E+00, \ 1.0000000000E+00, \ 1.2500000000E+00, \ 2.0000000000E+00, \ -4.0000000000E+00, \ 7.5000000000E+00, \ 11.0000000000E+00, \ 11.5000000000E+00, \ -16.0000000000E+00, \ 20.0000000000E+00, \ 25.0000000000E+00, \ -30.0000000000E+00, \ 50.0000000000E+00, \ 75.0000000000E+00, \ -80.0000000000E+00, \ 100.0000000000E+00, \ -125.0000000000E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 f = 0.0 else: x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, x, f def struve_l1_values_test ( ): #*****************************************************************************80 # ## STRUVE_L1_VALUES_TEST demonstrates the use of STRUVE_L1_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # print '' print 'STRUVE_L1_VALUES_TEST:' print ' STRUVE_L1_VALUES stores values of the STRUVE_L1 function.' print '' print ' X STRUVE_L1(X)' print '' n_data = 0 while ( True ): n_data, x, f = struve_l1_values ( n_data ) if ( n_data == 0 ): break print ' %12g %24.16g' % ( x, f ) print '' print 'STRUVE_L1_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) struve_l1_values_test ( ) timestamp ( )