#!/usr/bin/env python # def student_noncentral_cdf_values ( n_data ): #*****************************************************************************80 # ## STUDENT_NONCENTRAL_CDF_VALUES returns values of the noncentral Student CDF. # # Discussion: # # In Mathematica, the function can be evaluated by: # # Needs["Statistics`ContinuousDistributions`"] # dist = NoncentralStudentTDistribution [ df, lambda ] # CDF [ dist, x ] # # Mathematica seems to have some difficulty computing this function # to the desired number of digits. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer DF, real LAM, the parameters of the # function. # # Output, real X, the argument of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 30 df_vec = np.array ( ( \ 1, 2, 3, \ 1, 2, 3, \ 1, 2, 3, \ 1, 2, 3, \ 1, 2, 3, \ 15, 20, 25, \ 1, 2, 3, \ 10, 10, 10, \ 10, 10, 10, \ 10, 10, 10 )) f_vec = np.array ( ( \ 0.8975836176504333E+00, \ 0.9522670169E+00, \ 0.9711655571887813E+00, \ 0.8231218864E+00, \ 0.9049021510E+00, \ 0.9363471834E+00, \ 0.7301025986E+00, \ 0.8335594263E+00, \ 0.8774010255E+00, \ 0.5248571617E+00, \ 0.6293856597E+00, \ 0.6800271741E+00, \ 0.20590131975E+00, \ 0.2112148916E+00, \ 0.2074730718E+00, \ 0.9981130072E+00, \ 0.9994873850E+00, \ 0.9998391562E+00, \ 0.168610566972E+00, \ 0.16967950985E+00, \ 0.1701041003E+00, \ 0.9247683363E+00, \ 0.7483139269E+00, \ 0.4659802096E+00, \ 0.9761872541E+00, \ 0.8979689357E+00, \ 0.7181904627E+00, \ 0.9923658945E+00, \ 0.9610341649E+00, \ 0.8688007350E+00 )) lam_vec = np.array ( ( \ 0.0E+00, \ 0.0E+00, \ 0.0E+00, \ 0.5E+00, \ 0.5E+00, \ 0.5E+00, \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 2.0E+00, \ 2.0E+00, \ 2.0E+00, \ 4.0E+00, \ 4.0E+00, \ 4.0E+00, \ 7.0E+00, \ 7.0E+00, \ 7.0E+00, \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 2.0E+00, \ 3.0E+00, \ 4.0E+00, \ 2.0E+00, \ 3.0E+00, \ 4.0E+00, \ 2.0E+00, \ 3.0E+00, \ 4.0E+00 )) x_vec = np.array ( ( \ 3.00E+00, \ 3.00E+00, \ 3.00E+00, \ 3.00E+00, \ 3.00E+00, \ 3.00E+00, \ 3.00E+00, \ 3.00E+00, \ 3.00E+00, \ 3.00E+00, \ 3.00E+00, \ 3.00E+00, \ 3.00E+00, \ 3.00E+00, \ 3.00E+00, \ 15.00E+00, \ 15.00E+00, \ 15.00E+00, \ 0.05E+00, \ 0.05E+00, \ 0.05E+00, \ 4.00E+00, \ 4.00E+00, \ 4.00E+00, \ 5.00E+00, \ 5.00E+00, \ 5.00E+00, \ 6.00E+00, \ 6.00E+00, \ 6.00E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 df = 0 lam = 0.0 x = 0.0 f = 0.0 else: df = df_vec[n_data] lam = lam_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, df, lam, x, f def student_noncentral_cdf_values_test ( ): #*****************************************************************************80 # ## STUDENT_NONCENTRAL_CDF_VALUES_TEST demonstrates the use of STUDENT_NONCENTRAL_CDF_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # print '' print 'STUDENT_NONCENTRAL_CDF_VALUES_TEST:' print ' STUDENT_NONCENTRAL_CDF_VALUES stores values of the STUDENT_NONCENTRAL_CDF function.' print '' print ' DF LAM X CDF(DF,LAM,X)' print '' n_data = 0 while ( True ): n_data, df, lam, x, f = student_noncentral_cdf_values ( n_data ) if ( n_data == 0 ): break print ' %6d %12g %12g %24.16g' % ( df, lam, x, f ) print '' print 'STUDENT_NONCENTRAL_CDF_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) student_noncentral_cdf_values_test ( ) timestamp ( )