#!/usr/bin/env python # def synch1_values ( n_data ): #*****************************************************************************80 # ## SYNCH1_VALUES returns some values of the synchrotron radiation function. # # Discussion: # # The function is defined by: # # SYNCH1(x) = x * Integral ( x <= t < infinity ) K(5/3)(t) dt # # where K(5/3) is a modified Bessel function of order 5/3. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Allan McLeod, # Algorithm 757, MISCFUN: A software package to compute uncommon # special functions, # ACM Transactions on Mathematical Software, # Volume 22, Number 3, September 1996, pages 288-301. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, the argument of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 20 f_vec = np.array ( ( \ 0.26514864547487397044E+00, \ 0.62050129979079045645E+00, \ 0.85112572132368011206E+00, \ 0.87081914687546885094E+00, \ 0.65142281535536396975E+00, \ 0.45064040920322354579E+00, \ 0.30163590285073940285E+00, \ 0.19814490804441305867E+00, \ 0.12856571000906381300E+00, \ 0.52827396697866818297E-01, \ 0.42139298471720305542E-01, \ 0.21248129774981984268E-01, \ 0.13400258907505536491E-01, \ 0.84260797314108699935E-02, \ 0.12884516186754671469E-02, \ 0.19223826430086897418E-03, \ 0.28221070834007689394E-04, \ 0.15548757973038189372E-05, \ 0.11968634456097453636E-07, \ 0.89564246772237127742E-10 )) x_vec = np.array ( ( \ 0.0019531250E+00, \ 0.0312500000E+00, \ 0.1250000000E+00, \ 0.5000000000E+00, \ 1.0000000000E+00, \ 1.5000000000E+00, \ 2.0000000000E+00, \ 2.5000000000E+00, \ 3.0000000000E+00, \ 4.0000000000E+00, \ 4.2500000000E+00, \ 5.0000000000E+00, \ 5.5000000000E+00, \ 6.0000000000E+00, \ 8.0000000000E+00, \ 10.0000000000E+00, \ 12.0000000000E+00, \ 15.0000000000E+00, \ 20.0000000000E+00, \ 25.0000000000E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 f = 0.0 else: x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, x, f def synch1_values_test ( ): #*****************************************************************************80 # ## SYNCH1_VALUES_TEST demonstrates the use of SYNCH1_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # print '' print 'SYNCH1_VALUES_TEST:' print ' SYNCH1_VALUES stores values of the SYNCH1 function.' print '' print ' X SYNCH1(X)' print '' n_data = 0 while ( True ): n_data, x, f = synch1_values ( n_data ) if ( n_data == 0 ): break print ' %12g %24.16g' % ( x, f ) print '' print 'SYNCH1_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) synch1_values_test ( ) timestamp ( )