#!/usr/bin/env python # def tau_values ( n_data ): #*****************************************************************************80 # ## TAU_VALUES returns some values of the Tau function. # # Discussion: # # TAU(N) is the number of divisors of N, including 1 and N. # # In Mathematica, the function can be evaluated by: # # DivisorSigma[1,n] # # First values: # # N TAU(N) # # 1 1 # 2 2 # 3 2 # 4 3 # 5 2 # 6 4 # 7 2 # 8 4 # 9 3 # 10 4 # 11 2 # 12 6 # 13 2 # 14 4 # 15 4 # 16 5 # 17 2 # 18 6 # 19 2 # 20 6 # # Formula: # # If the prime factorization of N is # # N = P1^E1 * P2^E2 * ... * PM^EM, # # then # # TAU(N) = ( E1 + 1 ) * ( E2 + 1 ) * ... * ( EM + 1 ). # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N, the argument of the Tau function. # # Output, integer C, the value of the Tau function. # import numpy as np n_max = 20 c_vec = np.array ( ( \ 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, \ 2, 12, 12, 4, 18, 24, 2, 8, 14, 28 )) n_vec = np.array ( ( \ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \ 23, 72, 126, 226, 300, 480, 521, 610, 832, 960 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0 c = 0 else: n = n_vec[n_data] c = c_vec[n_data] n_data = n_data + 1 return n_data, n, c def tau_values_test ( ): #*****************************************************************************80 # ## TAU_VALUES_TEST demonstrates the use of TAU_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # print '' print 'TAU_VALUES_TEST:' print ' TAU_VALUES stores values of the TAU function.' print '' print ' N TAU(N)' print '' n_data = 0 while ( True ): n_data, n, c = tau_values ( n_data ) if ( n_data == 0 ): break print ' %12d %12d' % ( n, c ) print '' print 'TAU_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) tau_values_test ( ) timestamp ( )