#!/usr/bin/env python # def three_j_values ( n_data ): #*****************************************************************************80 # ## THREE_J_VALUES returns some values of the Wigner 3J function. # # Discussion: # # In Mathematica, the function can be evaluated by: # # ThreeJSymbol[{j1,m1},{j2,m2},{j3,m3}] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz, Irene Stegun, # Handbook of Mathematical Functions, # National Bureau of Standards, 1964, # ISBN: 0-486-61272-4, # LC: QA47.A34. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Cambridge University Press, 1999, # ISBN: 0-521-64314-7, # LC: QA76.95.W65. # # Parameters: # # Input, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each subsequent call, the input value should be # the output value from the previous call. # # Output, integer N_DATA. The routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real J1, J2, J3, M1, M2, M3, the arguments # of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 8 f_vec = np.array ( ( \ 0.2788866755113585, \ -0.09534625892455923, \ -0.06741998624632421, \ 0.1533110351679666, \ -0.1564465546936860, \ 0.1099450412156551, \ -0.05536235693131719, \ 0.01799835451137786 )) j1_vec = np.array ( ( \ 1.0, \ 2.0, \ 3.0, \ 4.0, \ 5.0, \ 6.0, \ 7.0, \ 8.0 )) j2_vec = np.array ( ( \ 4.5, \ 4.5, \ 4.5, \ 4.5, \ 4.5, \ 4.5, \ 4.5, \ 4.5 )) j3_vec = np.array ( ( \ 3.5, \ 3.5, \ 3.5, \ 3.5, \ 3.5, \ 3.5, \ 3.5, \ 3.5 )) m1_vec = np.array ( ( \ 1.0, \ 1.0, \ 1.0, \ 1.0, \ 1.0, \ 1.0, \ 1.0, \ 1.0 )) m2_vec = np.array ( ( \ -3.5, \ -3.5, \ -3.5, \ -3.5, \ -3.5, \ -3.5, \ -3.5, \ -3.5 )) m3_vec = np.array ( ( \ 2.5, \ 2.5, \ 2.5, \ 2.5, \ 2.5, \ 2.5, \ 2.5, \ 2.5 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 j1 = 0.0 j2 = 0.0 j3 = 0.0 m1 = 0.0 m2 = 0.0 m3 = 0.0 f = 0.0 else: j1 = j1_vec[n_data] j2 = j2_vec[n_data] j3 = j3_vec[n_data] m1 = m1_vec[n_data] m2 = m2_vec[n_data] m3 = m3_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, j1, j2, j3, m1, m2, m3, f def three_j_values_test ( ): #*****************************************************************************80 # ## THREE_J_VALUES_TEST demonstrates the use of THREE_J_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # print '' print 'THREE_J_VALUES_TEST:' print ' THREE_J_VALUES stores values of the THREE_J function.' print '' print ' J1 J2 J3 M1 M2 M3 THREE_J(X)' print '' n_data = 0 while ( True ): n_data, j1, j2, j3, m1, m2, m3, f = three_j_values ( n_data ) if ( n_data == 0 ): break print ' %4.1f %4.1f %4.1f %4.1f %4.1f %4.1f %24.16f' \ % ( j1, j2, j3, m1, m2, m3, f ) print '' print 'THREE_J_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) three_j_values_test ( ) timestamp ( )