#!/usr/bin/env python # def truncated_normal_a_pdf_values ( n_data ): #*****************************************************************************80 # ## TRUNCATED_NORMAL_A_PDF_VALUES: values of the Truncated Normal A PDF. # # Discussion: # # The Normal distribution, with mean Mu and standard deviation Sigma, # is truncated to the interval [A,+oo). # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # # Reference: # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real MU, the mean of the distribution. # # Output, real SIGMA, the standard deviation of the distribution. # # Output, real A, the lower truncation limit. # # Output, real X, the argument of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 11 a_vec = np.array ( ( \ 50.0, \ 50.0, \ 50.0, \ 50.0, \ 50.0, \ 50.0, \ 50.0, \ 50.0, \ 50.0, \ 50.0, \ 50.0 )) f_vec = np.array ( ( \ 0.01507373507401876, \ 0.01551417047139894, \ 0.01586560931024694, \ 0.01612150073158793, \ 0.01627701240029317, \ 0.01632918226724295, \ 0.01627701240029317, \ 0.01612150073158793, \ 0.01586560931024694, \ 0.01551417047139894, \ 0.01507373507401876 )) mu_vec = np.array ( ( \ 100.0, \ 100.0, \ 100.0, \ 100.0, \ 100.0, \ 100.0, \ 100.0, \ 100.0, \ 100.0, \ 100.0, \ 100.0 )) sigma_vec = np.array ( ( \ 25.0, \ 25.0, \ 25.0, \ 25.0, \ 25.0, \ 25.0, \ 25.0, \ 25.0, \ 25.0, \ 25.0, \ 25.0 )) x_vec = np.array ( ( \ 90.0, \ 92.0, \ 94.0, \ 96.0, \ 98.0, \ 100.0, \ 102.0, \ 104.0, \ 106.0, \ 108.0, \ 110.0 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 mu = 0.0 sigma = 0.0 a = 0.0 x = 0.0 f = 0.0 else: mu = mu_vec[n_data] sigma = sigma_vec[n_data] a = a_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, mu, sigma, a, x, f def truncated_normal_a_pdf_values_test ( ): #*****************************************************************************80 # ## TRUNCATED_NORMAL_A_PDF_VALUES_TEST demonstrates the use of TRUNCATED_NORMAL_A_PDF_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # print '' print 'TRUNCATED_NORMAL_A_PDF_VALUES_TEST:' print ' TRUNCATED_NORMAL_A_PDF_VALUES stores values of the TRUNCATED_NORMAL_a_PDF function.' print '' print ' MU SIGMA A X F' print '' n_data = 0 while ( True ): n_data, mu, sigma, a, x, f = truncated_normal_a_pdf_values ( n_data ) if ( n_data == 0 ): break print ' %12g %12g %12g %12g %24.16g' % ( mu, sigma, a, x, f ) print '' print 'TRUNCATED_NORMAL_A_PDF_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) truncated_normal_a_pdf_values_test ( ) timestamp ( )