#!/usr/bin/env python # def van_der_corput_values ( n_data ): #*****************************************************************************80 # ## VAN_DER_CORPUT_VALUES returns some values of the van der Corput sequence. # # Discussion: # # The van der Corput sequence is often used to generate a "subrandom" # sequence of points which have a better covering property # than pseudorandom points. # # The van der Corput sequence generates a sequence of points in [0,1] # which (theoretically) never repeats. Except for SEED = 0, the # elements of the van der Corput sequence are strictly between 0 and 1. # # The van der Corput sequence writes an integer in a given base B, # and then its digits are "reflected" about the decimal point. # This maps the numbers from 1 to N into a set of numbers in [0,1], # which are especially nicely distributed if N is one less # than a power of the base. # # Hammersley suggested generating a set of N nicely distributed # points in two dimensions by setting the first component of the # Ith point to I/N, and the second to the van der Corput # value of I in base 2. # # Halton suggested that in many cases, you might not know the number # of points you were generating, so Hammersley's formulation was # not ideal. Instead, he suggested that to generate a nicely # distributed sequence of points in M dimensions, you simply # choose the first M primes, P(1:M), and then for the J-th component of # the I-th point in the sequence, you compute the van der Corput # value of I in base P(J). # # Thus, to generate a Halton sequence in a 2 dimensional space, # it is typical practice to generate a pair of van der Corput sequences, # the first with prime base 2, the second with prime base 3. # Similarly, by using the first K primes, a suitable sequence # in K-dimensional space can be generated. # # The generation is quite simple. Given an integer SEED, the expansion # of SEED in base BASE is generated. Then, essentially, the result R # is generated by writing a decimal point followed by the digits of # the expansion of SEED, in reverse order. This decimal value is actually # still in base BASE, so it must be properly interpreted to generate # a usable value. # # Example: # # BASE = 2 # # SEED SEED van der Corput # decimal binary binary decimal # ------- ------ ------ ------- # 0 = 0 => .0 = 0.0; # 1 = 1 => .1 = 0.5 # 2 = 10 => .01 = 0.25 # 3 = 11 => .11 = 0.75 # 4 = 100 => .001 = 0.125 # 5 = 101 => .101 = 0.625 # 6 = 110 => .011 = 0.375 # 7 = 111 => .111 = 0.875 # 8 = 1000 => .0001 = 0.0;625 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # # Reference: # # J H Halton, # On the efficiency of certain quasi-random sequences of points # in evaluating multi-dimensional integrals, # Numerische Mathematik, # Volume 2, pages 84-90, 1960. # # J M Hammersley, # Monte Carlo methods for solving multivariable problems, # Proceedings of the New York Academy of Science, # Volume 86, pages 844-874, 1960. # # J G van der Corput, # Verteilungsfunktionen, # Proc Akad Amsterdam, # Volume 38, 1935, # Volume 39, 1936. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer BASE, the base of the sequence. # # Output, integer SEED, the index of the element of the sequence. # # Output, real VALUE, the value of the SEED-th element of the # van der Corput sequence in base BASE. # import numpy as np n_max = 75 base_vec = np.array ( ( \ 2, 2, 2, 2, 2, \ 2, 2, 2, 2, 3, \ 3, 3, 3, 3, 3, \ 3, 3, 3, 4, 4, \ 4, 4, 4, 4, 4, \ 4, 4, 2, 3, 4, \ 5, 7, 11, 13, 2, \ 3, 4, 5, 7, 11, \ 13, 2, 3, 4, 5, \ 7, 11, 13, 2, 3, \ 4, 5, 7, 11, 13, \ 29, 29, 29, 29, 29, \ 71, 71, 71, 71, 71, \ 173, 173, 173, 173, 173, \ 409, 409, 409, 409, 409 )) seed_vec = np.array ( ( \ 0, 1, 2, 3, 4, \ 5, 6, 7, 8, 0, \ 1, 2, 3, 4, 5, \ 6, 7, 8, 0, 1, \ 2, 3, 4, 5, 6, \ 7, 8, 10, 10, 10, \ 10, 10, 10, 10, 100, \ 100, 100, 100, 100, 100, \ 100, 1000, 1000, 1000, 1000, \ 1000, 1000, 1000, 10000, 10000, \ 10000, 10000, 10000, 10000, 10000, \ 1000, 1001, 1002, 1003, 1004, \ 1000, 1001, 1002, 1003, 1004, \ 1000, 1001, 1002, 1003, 1004, \ 1000, 1001, 1002, 1003, 1004 )) value_vec = np.array ( ( \ 0.0000000000000000E+00, \ 0.5000000000000000E+00, \ 0.2500000000000000E+00, \ 0.7500000000000000E+00, \ 0.1250000000000000E+00, \ 0.6250000000000000E+00, \ 0.3750000000000000E+00, \ 0.8750000000000000E+00, \ 0.0625000000000000E+00, \ 0.0000000000000000E+00, \ 0.3333333333333333E+00, \ 0.6666666666666666E+00, \ 0.1111111111111111E+00, \ 0.4444444444444444E+00, \ 0.7777777777777777E+00, \ 0.2222222222222222E+00, \ 0.5555555555555556E+00, \ 0.8888888888888888E+00, \ 0.0000000000000000E+00, \ 0.2500000000000000E+00, \ 0.5000000000000000E+00, \ 0.7500000000000000E+00, \ 0.0625000000000000E+00, \ 0.3125000000000000E+00, \ 0.5625000000000000E+00, \ 0.8125000000000000E+00, \ 0.1250000000000000E+00, \ 0.3125000000000000E+00, \ 0.3703703703703703E+00, \ 0.6250000000000000E+00, \ 0.0800000000000000E+00, \ 0.4489795918367347E+00, \ 0.9090909090909092E+00, \ 0.7692307692307693E+00, \ 0.1484375000000000E+00, \ 0.4115226337448559E+00, \ 0.0976562500000000E+00, \ 0.0320000000000000E+00, \ 0.2915451895043731E+00, \ 0.1652892561983471E+00, \ 0.7337278106508875E+00, \ 0.0927734375000000E+00, \ 0.3475080018289895E+00, \ 0.1708984375000000E+00, \ 0.0051200000000000E+00, \ 0.9162848812994586E+00, \ 0.9316303531179565E+00, \ 0.9904415111515704E+00, \ 0.0347290039062500E+00, \ 0.3861200020322105E+00, \ 0.0189208984375000E+00, \ 0.0005120000000000E+00, \ 0.5749985125245433E+00, \ 0.1529950140017758E+00, \ 0.2459297643639929E+00, \ 0.4887449259912255E+00, \ 0.5232276846119153E+00, \ 0.5577104432326049E+00, \ 0.5921932018532945E+00, \ 0.6266759604739842E+00, \ 0.0872842689942472E+00, \ 0.1013687760365007E+00, \ 0.1154532830787542E+00, \ 0.1295377901210077E+00, \ 0.1436222971632613E+00, \ 0.7805138828560928E+00, \ 0.7862942296769020E+00, \ 0.7920745764977113E+00, \ 0.7978549233185205E+00, \ 0.8036352701393298E+00, \ 0.4449997309915651E+00, \ 0.4474447187666262E+00, \ 0.4498897065416874E+00, \ 0.4523346943167484E+00, \ 0.4547796820918096E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 base = 0 seed = 0 value = 0.0 else: base = base_vec[n_data] seed = seed_vec[n_data] value = value_vec[n_data] n_data = n_data + 1 return n_data, base, seed, value def van_der_corput_values_test ( ): #*****************************************************************************80 # ## VAN_DER_CORPUT_VALUES_TEST demonstrates the use of VAN_DER_CORPUT_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # print '' print 'VAN_DER_CORPUT_VALUES_TEST:' print ' VAN_DER_CORPUT_VALUES stores values of the VAN_DER_CORPUT function.' print '' print ' BASE SEED VALUE' print '' n_data = 0 while ( True ): n_data, base, seed, value = van_der_corput_values ( n_data ) if ( n_data == 0 ): break print ' %12d %12d %24.12g' % ( base, seed, value ) print '' print 'VAN_DER_CORPUT_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) van_der_corput_values_test ( ) timestamp ( )