#!/usr/bin/env python # def von_mises_cdf_values ( n_data ): #*****************************************************************************80 # ## VON_MISES_CDF_VALUES returns some values of the von Mises CDF. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # # Reference: # # Kanti Mardia and Peter Jupp, # Directional Statistics, # Wiley, 2000, QA276.M335 # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real A, B, the parameters of the function. # # Output, real X, the argument of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 23 a_vec = np.array ( ( \ 0.0E+00, \ 0.0E+00, \ 0.0E+00, \ 0.0E+00, \ 0.0E+00, \ 0.1E+01, \ 0.1E+01, \ 0.1E+01, \ 0.1E+01, \ 0.1E+01, \ 0.1E+01, \ -0.2E+01, \ -0.1E+01, \ 0.0E+01, \ 0.1E+01, \ 0.2E+01, \ 0.3E+01, \ 0.0E+00, \ 0.0E+00, \ 0.0E+00, \ 0.0E+00, \ 0.0E+00, \ 0.0E+00 )) b_vec = np.array ( ( \ 0.1E+01, \ 0.1E+01, \ 0.1E+01, \ 0.1E+01, \ 0.1E+01, \ 0.2E+01, \ 0.2E+01, \ 0.2E+01, \ 0.2E+01, \ 0.2E+01, \ 0.2E+01, \ 0.3E+01, \ 0.3E+01, \ 0.3E+01, \ 0.3E+01, \ 0.3E+01, \ 0.3E+01, \ 0.0E+00, \ 0.1E+01, \ 0.2E+01, \ 0.3E+01, \ 0.4E+01, \ 0.5E+01 )) f_vec = np.array ( ( \ 0.2535089956281180E-01, \ 0.1097539041177346E+00, \ 0.5000000000000000E+00, \ 0.8043381312498558E+00, \ 0.9417460124555197E+00, \ 0.5000000000000000E+00, \ 0.6018204118446155E+00, \ 0.6959356933122230E+00, \ 0.7765935901304593E+00, \ 0.8410725934916615E+00, \ 0.8895777369550366E+00, \ 0.9960322705517925E+00, \ 0.9404336090170247E+00, \ 0.5000000000000000E+00, \ 0.5956639098297530E-01, \ 0.3967729448207649E-02, \ 0.2321953958111930E-03, \ 0.6250000000000000E+00, \ 0.7438406999109122E+00, \ 0.8369224904294019E+00, \ 0.8941711407897124E+00, \ 0.9291058600568743E+00, \ 0.9514289900655436E+00 )) x_vec = np.array ( ( \ -0.2617993977991494E+01, \ -0.1570796326794897E+01, \ 0.0000000000000000E+00, \ 0.1047197551196598E+01, \ 0.2094395102393195E+01, \ 0.1000000000000000E+01, \ 0.1200000000000000E+01, \ 0.1400000000000000E+01, \ 0.1600000000000000E+01, \ 0.1800000000000000E+01, \ 0.2000000000000000E+01, \ 0.0000000000000000E+00, \ 0.0000000000000000E+00, \ 0.0000000000000000E+00, \ 0.0000000000000000E+00, \ 0.0000000000000000E+00, \ 0.0000000000000000E+00, \ 0.7853981633974483E+00, \ 0.7853981633974483E+00, \ 0.7853981633974483E+00, \ 0.7853981633974483E+00, \ 0.7853981633974483E+00, \ 0.7853981633974483E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 a = 0.0 b = 0.0 x = 0.0 f = 0.0 else: a = a_vec[n_data] b = b_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, a, b, x, f def von_mises_cdf_values_test ( ): #*****************************************************************************80 # ## VON_MISES_CDF_VALUES_TEST demonstrates the use of VON_MISES_CDF_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # print '' print 'VON_MISES_CDF_VALUES_TEST:' print ' VON_MISES_CDF_VALUES stores values of the von Mises CDF.' print '' print ' A B X CDF(A,B,X)' print '' n_data = 0 while ( True ): n_data, a, b, x, f = von_mises_cdf_values ( n_data ) if ( n_data == 0 ): break print ' %12g %12g %12g %24.16g' % ( a, b, x, f ) print '' print 'VON_MISES_CDF_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) von_mises_cdf_values_test ( ) timestamp ( )