#!/usr/bin/env python # def weibull_cdf_values ( n_data ): #*****************************************************************************80 # ## WEIBULL_CDF_VALUES returns some values of the Weibull CDF. # # Discussion: # # In Mathematica, the function can be evaluated by: # # Needs["Statistics`ContinuousDistributions`"] # dist = WeibullDistribution [ alpha, beta ] # CDF [ dist, x ] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real ALPHA, the first parameter of the distribution. # # Output, real BETA, the second parameter of the distribution. # # Output, real X, the argument of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 12 alpha_vec = np.array ( ( \ 0.1000000000000000E+01, \ 0.1000000000000000E+01, \ 0.1000000000000000E+01, \ 0.1000000000000000E+01, \ 0.1000000000000000E+01, \ 0.1000000000000000E+01, \ 0.1000000000000000E+01, \ 0.1000000000000000E+01, \ 0.2000000000000000E+01, \ 0.3000000000000000E+01, \ 0.4000000000000000E+01, \ 0.5000000000000000E+01 )) beta_vec = np.array ( ( \ 0.5000000000000000E+00, \ 0.5000000000000000E+00, \ 0.5000000000000000E+00, \ 0.5000000000000000E+00, \ 0.2000000000000000E+01, \ 0.3000000000000000E+01, \ 0.4000000000000000E+01, \ 0.5000000000000000E+01, \ 0.2000000000000000E+01, \ 0.2000000000000000E+01, \ 0.2000000000000000E+01, \ 0.2000000000000000E+01 )) f_vec = np.array ( ( \ 0.8646647167633873E+00, \ 0.9816843611112658E+00, \ 0.9975212478233336E+00, \ 0.9996645373720975E+00, \ 0.6321205588285577E+00, \ 0.4865828809674080E+00, \ 0.3934693402873666E+00, \ 0.3296799539643607E+00, \ 0.8946007754381357E+00, \ 0.9657818816883340E+00, \ 0.9936702845725143E+00, \ 0.9994964109502630E+00 )) x_vec = np.array ( ( \ 0.1000000000000000E+01, \ 0.2000000000000000E+01, \ 0.3000000000000000E+01, \ 0.4000000000000000E+01, \ 0.2000000000000000E+01, \ 0.2000000000000000E+01, \ 0.2000000000000000E+01, \ 0.2000000000000000E+01, \ 0.3000000000000000E+01, \ 0.3000000000000000E+01, \ 0.3000000000000000E+01, \ 0.3000000000000000E+01 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 alpha = 0.0 beta = 0.0 x = 0.0 f = 0.0 else: alpha = alpha_vec[n_data] beta = beta_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, alpha, beta, x, f def weibull_cdf_values_test ( ): #*****************************************************************************80 # ## WEIBULL_CDF_VALUES_TEST demonstrates the use of WEIBULL_CDF_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # print '' print 'WEIBULL_CDF_VALUES_TEST:' print ' WEIBULL_CDF_VALUES stores values of the von Mises CDF.' print '' print ' ALPHA BETA X CDF(ALPHA,BETA,X)' print '' n_data = 0 while ( True ): n_data, alpha, beta, x, f = weibull_cdf_values ( n_data ) if ( n_data == 0 ): break print ' %12g %12g %12g %24.16g' % ( alpha, beta, x, f ) print '' print 'WEIBULL_CDF_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) weibull_cdf_values_test ( ) timestamp ( )