#! /usr/bin/env python # def triangle01_monomial_integral ( i, j ): #*****************************************************************************80 # ## TRIANGLE01_MONOMIAL_INTEGRAL: monomial integrals in the unit triangle in 2D. # # Discussion: # # The monomial is F(X,Y) = X^E(1) * Y^E(2). # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer I, J, the exponents. # Each exponent must be nonnegative. # # Output, real INTEGRAL, the integral. # from sys import exit if ( i < 0 or j < 0 ): print '' print 'TRIANGLE01_MONOMIAL_INTEGRAL - Fatal error!' print ' All exponents must be nonnegative.' exit ( 'TRIANGLE01_MONOMIAL_INTEGRAL - Fatal error!' ) k = 0 integral = 1.0 for l in range ( 1, i + 1 ): k = k + 1 integral = integral * float ( l ) / float ( k ) for l in range ( 1, j + 1 ): k = k + 1 integral = integral * float ( l ) / float ( k ) for l in range ( 0, 2 ): k = k + 1 integral = integral / float ( k ) return integral def triangle01_monomial_integral_test01 ( ): #*****************************************************************************80 # ## TRIANGLE01_MONOMIAL_INTEGRAL_TEST01 tests TRIANGLE01_MONOMIAL_INTEGRAL. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 April 2015 # # Author: # # John Burkardt # import numpy as np print '' print 'TRIANGLE01_MONOMIAL_INTEGRAL_TEST01' print ' TRIANGLE01_MONOMIAL_INTEGRAL computes the integral of' print ' a monomial X^I Y^J over the unit triangle.' print '' print ' I J Integral(X^I Y^J)' for d in range ( 0, 5 ): print '' for i in range ( 0, d + 1 ): j = d - i q = triangle01_monomial_integral ( i, j ) print ' %2d %2d %14.6g' % ( i, j, q ) # # Terminate. # print '' print 'TRIANGLE01_MONOMIAL_INTEGRAL_TEST01:' print ' Normal end of execution.' return def triangle01_monomial_integral_test02 ( ): #*****************************************************************************80 # ## TRIANGLE01_MONOMIAL_INTEGRAL_TEST02 estimates integrals over the unit triangle in 2D. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 April 2015 # # Author: # # John Burkardt # import numpy as np from monomial_value import monomial_value from triangle01_sample import triangle01_sample m = 2 n = 4192 test_num = 20 print '' print 'TRIANGLE01_MONOMIAL_INTEGRAL_TEST02' print ' Estimate monomial integrals using Monte Carlo' print ' over the interior of the unit triangle in 2D.' # # Get sample points. # seed = 123456789 x, seed = triangle01_sample ( n, seed ) print '' print ' Number of sample points used is %d' % ( n ) # # Randomly choose X, Y exponents. # print '' print ' We restrict this test to randomly chosen even exponents.' print '' print ' Ex Ey MC-Estimate Exact Error' print '' e = np.zeros ( 2, dtype = np.int32 ) for i in range ( 0, 5 ): e[0] = i for j in range ( 0, 5 ): e[1] = j value = monomial_value ( m, n, e, x ) result = 0.5 * sum ( value[:] ) / float ( n ) exact = triangle01_monomial_integral ( i, j ) error = abs ( result - exact ) print ' %2d %2d %14.6g %14.6g %10.2e' \ % ( e[0], e[1], result, exact, error ) # # Terminate. # print '' print 'TRIANGLE01_MONOMIAL_INTEGRAL_TEST02:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) triangle01_monomial_integral_test01 ( ) triangle01_monomial_integral_test02 ( ) timestamp ( )