#! /usr/bin/env python # def triangle01_sample ( n, seed ): #*****************************************************************************80 # ## TRIANGLE01_SAMPLE samples the interior of the unit triangle in 2D. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 April 2015 # # Author: # # John Burkardt # # Reference: # # Reuven Rubinstein, # Monte Carlo Optimization, Simulation, and Sensitivity # of Queueing Networks, # Krieger, 1992, # ISBN: 0894647644, # LC: QA298.R79. # # Parameters: # # Input, integer N, the number of points. # # Input/output, integer SEED, a seed for the random # number generator. # # Output, real X[2,N], the points. # import numpy as np from r8vec_uniform_01 import r8vec_uniform_01 x = np.zeros ( ( 2, n ) ) m = 2 for j in range ( 0, n ): e, seed = r8vec_uniform_01 ( m + 1, seed ) for i in range ( 0, m + 1 ): e[i] = - np.log ( e[i] ) e_sum = 0.0 for i in range ( 0, m + 1 ): e_sum = e_sum + e[i] for i in range ( 0, m ): x[i,j] = e[i] / e_sum return x, seed def triangle01_sample_test ( ): #*****************************************************************************80 # ## TRIANGLE01_SAMPLE_TEST tests TRIANGLE01_SAMPLE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 April 2015 # # Author: # # John Burkardt # from r8mat_transpose_print import r8mat_transpose_print print '' print 'TRIANGLE01_SAMPLE_TEST' print ' TRIANGLE01_SAMPLE randomly samples the unit triangle.' m = 2 n = 10 seed = 123456789 print '' print ' Number of samples to select is N = %d' % ( n ) x, seed = triangle01_sample ( n, seed ) r8mat_transpose_print ( m, n, x, ' Random points in unit triangle.' ) # # Terminate. # print '' print 'TRIANGLE01_SAMPLE_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) triangle01_sample_test ( ) timestamp ( )