#! /usr/bin/env python # def poly_power_linear ( d1, p1, n ): #*****************************************************************************80 # ## POLY_POWER_LINEAR computes the polynomial ( a + b*x + c*y ) ^ n. # # Location: # # http://people.sc.fsu.edu/~jburkardt/py_src/triangle_integrals/poly_power_linear.py # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer D1, the degree of the linear polynomial, # which should be 1. # # Input, real P1(M1), the coefficients of the linear polynomial. # M1 = ( (D1+1)*(D1+2) ) / 2, which should be 3. # # Input, integer N, the power to which the polynomial is to be raised. # 0 <= N. # # Output, integer D2, the degree of the power polyynomial, which # should be D2 = N * D1 = N. # # Output, real P2(M2), the coefficients of the power polynomial. # M2 = ( (D2+1)*(D2+2) ) / 2, which should be ((N+1)*(N+2))/2. # import numpy as np from pascal_to_i4 import pascal_to_i4 from sys import exit from trinomial import trinomial if ( d1 < 0 ): print '' print 'POLY_POWER_LINEAR - Fatal error!' print ' D1 < 0.' exit ( 'POLY_POWER_LINEAR - Fatal error!' ) if ( n < 0 ): print '' print 'POLY_POWER_LINEAR - Fatal error!' print ' N < 0.' exit ( 'POLY_POWER_LINEAR - Fatal error!' ) d2 = n * d1 m2 = ( ( d2 + 1 ) * ( d2 + 2 ) ) / 2 p2 = np.zeros ( m2 ) if ( d1 == 0 ): p2[0] = p1[0] ** n return d2, p2 if ( n == 0 ): p2[0] = 1.0 return d2, p2 # # Use the Trinomial formula. # for i in range ( 0, n + 1 ): for j in range ( 0, n - i + 1 ): for k in range ( 0, n - i - j + 1 ): # # We store X^J Y^K in location L. # l = pascal_to_i4 ( j, k ) lm1 = l - 1 p2[lm1] = trinomial ( i, j, k ) * p1[0] ** i * p1[1] ** j * p1[2] ** k return d2, p2 def poly_power_linear_test ( ): #*****************************************************************************80 # ## POLY_POWER_LINEAR_TEST tests POLY_POWER_LINEAR. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 April 2015 # # Author: # # John Burkardt # import numpy as np from poly_print import poly_print print '' print 'POLY_POWER_LINEAR_TEST:' print ' POLY_POWER_LINEAR computes the N-th power of' print ' a linear polynomial in X and Y.' # # P = ( 1 + 2 x + 3 y )^2 # d1 = 1 p1 = np.array ( [ 1.0, 2.0, 3.0 ] ) print '' poly_print ( d1, p1, ' p1(x,y)' ) dp, pp = poly_power_linear ( d1, p1, 2 ) print '' poly_print ( dp, pp, ' p1(x,y)^n' ) dc = 2 pc = np.array ( [ 1.0, 4.0, 6.0, 4.0, 12.0, 9.0 ] ) print '' poly_print ( dc, pc, ' Correct answer: p1(x,y)^2' ) # # P = ( 2 - x + 3 y )^3 # d1 = 1 p1 = np.array ( [ 2.0, -1.0, 3.0 ] ) print '' poly_print ( d1, p1, ' p1(x,y)' ) dp, pp = poly_power_linear ( d1, p1, 3 ) print '' poly_print ( dp, pp, ' p1(x,y)^3' ) dc = 3 pc = np.array ( [ 8.0, -12.0, 36.0, 6.0, -36.0, 54.0, -1.0, 9.0, -27.0, 27.0 ] ) print '' poly_print ( dc, pc, ' Correct answer: p1(x,y)^n' ) # # Terminate. # print '' print 'POLY_POWER_LINEAR_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) poly_power_linear_test ( ) timestamp ( )