#! /usr/bin/env python # def poly_product ( d1, p1, d2, p2 ): #*****************************************************************************80 # #% POLY_PRODUCT computes P3(x,y) = P1(x,y) * P2(x,y) for polynomials. # # Location: # # http://people.sc.fsu.edu/~jburkardt/py_src/triangle_integrals/poly_product.py # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer D1, the degree of factor 1. # # Input, real P1(M1), the factor 1 coefficients. # M1 = ((D1+1)*(D1+2))/2. # # Input, integer D2, the degree of factor 2. # # Input, real P2(M2), the factor2 coefficients. # M2 = ((D2+1)*(D2+2))/2. # # Output, integer D3, the degree of the result. # # Output, real P3(M3), the result coefficients. # M3 = ((D3+1)*(D3+2))/2. # import numpy as np from i4_to_pascal import i4_to_pascal from pascal_to_i4 import pascal_to_i4 d3 = d1 + d2 m3 = ( ( d3 + 1 ) * ( d3 + 2 ) ) / 2 p3 = np.zeros ( m3 ) # # Consider each entry in P1: # P1(K1) * X^I1 * Y^J1 # and multiply it by each entry in P2: # P2(K2) * X^I2 * Y^J2 # getting # P3(K3) = P3(K3) + P1(K1) * P2(X2) * X^(I1+I2) * Y(J1+J2) # m1 = ( ( d1 + 1 ) * ( d1 + 2 ) ) / 2 m2 = ( ( d2 + 1 ) * ( d2 + 2 ) ) / 2 for k1m1 in range ( 0, m1 ): k1 = k1m1 + 1 i1, j1 = i4_to_pascal ( k1 ) for k2m1 in range ( 0, m2 ): k2 = k2m1 + 1 i2, j2 = i4_to_pascal ( k2 ) i3 = i1 + i2 j3 = j1 + j2 k3 = pascal_to_i4 ( i3, j3 ) k3m1 = k3 - 1 p3[k3m1] = p3[k3m1] + p1[k1m1] * p2[k2m1] return d3, p3 def poly_product_test ( ): #*****************************************************************************80 # ## POLY_PRODUCT_TEST tests POLY_PRODUCT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 April 2015 # # Author: # # John Burkardt # import numpy as np from poly_print import poly_print print '' print 'POLY_PRODUCT_TEST:' print ' POLY_PRODUCT computes the product of two X,Y polynomials.' # # P1 = ( 1 + 2 x + 3 y ) # P2 = ( 4 + 5 x ) # P3 = 4 + 13x + 12y + 10x^2 + 15xy + 0y^2 # d1 = 1 p1 = np.array ( [ 1.0, 2.0, 3.0 ] ) print '' poly_print ( d1, p1, ' p1(x,y)' ) d2 = 1 p2 = np.array ( [ 4.0, 5.0, 0.0 ] ) print '' poly_print ( d2, p2, ' p2(x,y)' ) d3, p3 = poly_product ( d1, p1, d2, p2 ) print '' poly_print ( d3, p3, ' p3(x,y) = p1(x,y) * p2(x,y)' ) dc = 2 pc = np.array ( [ 4.0, 13.0, 12.0, 10.0, 15.0, 0.0 ] ) print '' poly_print ( dc, pc, ' Correct answer: p3(x,y)=p1(x,y)*p2(x,y)' ) # # P1 = ( 1 - 2 x + 3 y - 4x^2 + 5xy - 6y^2) # P2 = ( 7 + 3x^2 ) # P3 = 7 # - 14x + 21y # - 25 x^2 + 35 xy - 42y^2 # - 6x^3 + 9x^2y + 0xy^2 + 0y^3 # - 12x^4 + 15x^3y - 18x^2y^2 + 0 xy^3 + 0y^4 # d1 = 2 p1 = np.array ( [ 1.0, -2.0, 3.0, -4.0, +5.0, -6.0 ] ) print '' poly_print ( d1, p1, ' p1(x,y)' ) d2 = 2 p2 = np.array ( [ 7.0, 0.0, 0.0, 3.0, 0.0, 0.0 ] ) print '' poly_print ( d2, p2, ' p2(x,y)' ) d3, p3 = poly_product ( d1, p1, d2, p2 ) print '' poly_print ( d3, p3, ' p3(x,y) = p1(x,y) * p2(x,y)' ) dc = 4 pc = np.array ( [ \ 7.0, \ -14.0, 21.0, \ -25.0, +35.0, -42.0, \ -6.0, 9.0, 0.0, 0.0, \ -12.0, +15.0, -18.0, 0.0, 0.0 ] ) print '' poly_print ( dc, pc, ' Correct answer: p3(x,y)=p1(x,y)*p2(x,y)' ) # # Terminate. # print '' print 'POLY_PRODUCT_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) poly_product_test ( ) timestamp ( )