#! /usr/bin/env python # def rs_to_xy_map ( t ): #*****************************************************************************80 # ## RS_TO_XY_MAP returns the linear map from reference to physical triangle. # # Location: # # http://people.sc.fsu.edu/~jburkardt/py_src/triangle_poly_integral/rs_to_xy_map.py # # Discussion: # # This function returns the coefficients of the linear map that sends # the vertices of the reference triangle, (0,0), (1,0) and (0,1), to # the vertices of a physical triangle T, of the form: # # X = A + B * R + C * S; # Y = D + E * R + F * S. # # Reference Element: # # | # 1 3 # | |\ # | | \ # S | \ # | | \ # | | \ # 0 1-----2 # | # +--0--R--1--> # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real T[3,2], the coordinates of the vertices. The vertices are # assumed to be the images of (0,0), (1,0) and (0,1) respectively. # # Output, real A, B, C, D, E, F, the mapping coefficients. # a = t[0,0] b = t[1,0] - t[0,0] c = t[2,0] - t[0,0] d = t[0,1] e = t[1,1] - t[0,1] f = t[2,1] - t[0,1] return a, b, c, d, e, f def rs_to_xy_map_test ( ): #*****************************************************************************80 # ## RS_TO_XY_MAP_TEST tests RS_TO_XY_MAP. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 April 2015 # # Author: # # John Burkardt # import numpy as np from r8mat_print import r8mat_print print '' print 'RS_TO_XY_MAP_TEST:' print ' RS_TO_XY_MAP determines the coefficients of the linear map' print ' from a the reference in RS coordinates to the physical' print ' triangle in XY coordinates:' print ' X = a + b * R + c * S' print ' Y = d + e * R + f * S' tr = np.array ( [ \ [ 0.0, 0.0 ], \ [ 1.0, 0.0 ], \ [ 0.0, 1.0 ] ] ) t = np.array ( [ \ [ 2.0, 0.0 ], \ [ 3.0, 4.0 ], \ [ 0.0, 3.0 ] ] ) r8mat_print ( 3, 2, t, ' XY triangle vertices:' ) a, b, c, d, e, f = rs_to_xy_map ( t ) print '' print ' Mapping coefficients are:' print '' print ' X = %g + %g * R + %g * S' % ( a, b, c ) print ' Y = %g + %g * R + %g * S' % ( d, e, f ) print '' print ' Apply map to RS triangle vertices.' print ' Recover XY vertices (2,0), (3,4) and (0,3).' print '' for i in range ( 0, 3 ): x = a + b * tr[i,0] + c * tr[i,1] y = d + e * tr[i,0] + f * tr[i,1] print ' V(%d) = ( %g, %g )' % ( i, x, y ) # # Terminate. # print '' print 'RS_TO_XY_MAP_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) rs_to_xy_map_test ( ) timestamp ( )