#! /usr/bin/env python # def triangle01_poly_integral ( d, p ): #*****************************************************************************80 # ## TRIANGLE01_POLY_INTEGRAL: polynomial integral over the unit triangle. # # Location: # # http://people.sc.fsu.edu/~jburkardt/py_src/triangle_integrals/triangle01_poly_integral.py # # Discussion: # # The unit triangle is T = ( (0,0), (1,0), (0,1) ). # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer D, the degree of the polynomial. # # Input, real P(M), the polynomial coefficients. # M = ((D+1)*(D+2))/2. # # Output, real Q, the integral. # from i4_to_pascal import i4_to_pascal from triangle01_monomial_integral import triangle01_monomial_integral m = ( ( d + 1 ) * ( d + 2 ) ) / 2 q = 0.0 for k in range ( 1, m + 1 ): km1 = k - 1 i, j = i4_to_pascal ( k ) qk = triangle01_monomial_integral ( i, j ) q = q + p[km1] * qk return q def triangle01_poly_integral_test ( ): #*****************************************************************************80 # ## TRIANGLE01_POLY_INTEGRAL_TEST: polynomial integrals over the unit triangle. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 April 2015 # # Author: # # John Burkardt # import numpy as np from i4_to_pascal import i4_to_pascal from poly_print import poly_print from triangle01_monomial_integral import triangle01_monomial_integral d_max = 6 k_max = ( ( d_max + 1 ) * ( d_max + 2 ) ) / 2 qm = np.zeros ( k_max ) for k in range ( 1, k_max + 1 ): km1 = k - 1 i, j = i4_to_pascal ( k ) qm[km1] = triangle01_monomial_integral ( i, j ) print '' print 'TRIANGLE01_POLY_INTEGRAL_TEST' print ' TRIANGLE01_POLY_INTEGRAL returns the integral Q of' print ' a polynomial P(X,Y) over the interior of the unit triangle.' d = 1 m = ( ( d + 1 ) * ( d + 2 ) ) / 2 p = np.array ( [ 1.0, 2.0, 3.0 ] ) print '' poly_print ( d, p, ' p(x,y)' ) q = triangle01_poly_integral ( d, p ) print '' print ' Q = %g' % ( q ) q2 = np.dot ( p, qm[0:m] ) print ' Q (exact) = %g' % ( q2 ) d = 2 m = ( ( d + 1 ) * ( d + 2 ) ) / 2 p = np.array ( [ 0.0, 0.0, 0.0, 0.0, 1.0, 0.0 ] ) print '' poly_print ( d, p, ' p(x,y)' ) q = triangle01_poly_integral ( d, p ) print '' print ' Q = %g' % ( q ) q2 = np.dot ( p, qm[0:m] ) print ' Q (exact) = %g' % ( q2 ) d = 2 m = ( ( d + 1 ) * ( d + 2 ) ) / 2 p = np.array ( [ 1.0, -2.0, 3.0, -4.0, 5.0, -6.0 ] ) print '' poly_print ( d, p, ' p(x,y)' ) q = triangle01_poly_integral ( d, p ) print '' print ' Q = %g' % ( q ) q2 = np.dot ( p, qm[0:m] ) print ' Q (exact) = %g' % ( q2 ) # # Terminate. # print '' print 'TRIANGLE01_POLY_INTEGRAL_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) triangle01_poly_integral_test ( ) timestamp ( )