#! /usr/bin/env python # def triangle_area ( t ): #*****************************************************************************80 # ## TRIANGLE_AREA returns the area of a triangle. # # Location: # # http://people.sc.fsu.edu/~jburkardt/py_src/triangle_integrals/triangle_area.py # # Discussion: # # If the vertices are given in counter clockwise order, the area # will be positive. # # Licensing: # # This code is distributed under the GNU GPL license. # # Modified: # # 23 April 2015 # # Author: # # John Burkardt. # # Parameters: # # Input, real T[3,2], the vertices of the triangle. # # Output, real AREA, the area of the triangle. # area = 0.5 * \ ( \ ( t[1,0] - t[0,0] ) * ( t[2,1] - t[0,1] ) \ - ( t[2,0] - t[0,0] ) * ( t[1,1] - t[0,1] ) \ ) return area def triangle_area_test ( ): #*****************************************************************************80 # ## TRIANGLE_AREA_TEST tests TRIANGLE_AREA_MAP. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 April 2015 # # Author: # # John Burkardt # import numpy as np print '' print 'TRIANGLE_AREA_TEST:' print ' TRIANGLE_AREA determines the (signed) area of a triangle.' print '' print ' Triangle vertices are:' print ' (X1,Y1) = (0,0)' print ' (X2,Y2) = 2*(cos(angle),sin(angle))' print ' (X3,Y3) = (0,1)' print ' where angle will sweep from 0 to 360 degrees.' t = np.array ( [ \ [ 0.0, 0.0 ], \ [ 2.0, 0.0 ], \ [ 0.0, 1.0 ] ] ) r = 2.0 print '' print ' I Angle X2 Y2 Area' print ' (degrees)' print '' for i in range ( 0, 25 ): angled = float ( i ) * 180.0 / 12.0 angler = float ( i ) * np.pi / 12.0 t[1,0] = r * np.cos ( angler ); t[1,1] = r * np.sin ( angler ); area = triangle_area ( t ) print ' %2d %10.4f %10.4f %10.4f %14.6g' \ % ( i, angled, t[1,0], t[1,1], area ) # # Terminate. # print '' print 'TRIANGLE_AREA_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) triangle_area_test ( ) timestamp ( )