#! /usr/bin/env python # def triangle_monomial_integral ( i, j, t ): #*****************************************************************************80 # ## TRIANGLE_MONOMIAL_INTEGRAL integrates a monomial over an arbitrary triangle. # # Location: # # http://people.sc.fsu.edu/~jburkardt/py_src/triangle_integrals/triangle_monomial_integral.py # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer I, J, the exponents of X and Y in the monomial. # 0 <= I, J. # # Input, real T(2,3), the vertices of the triangle. # # Output, real Q, the integral of X^I * Y^J over triangle T. # import numpy as np from poly_power_linear import poly_power_linear from poly_product import poly_product from rs_to_xy_map import rs_to_xy_map from triangle_area import triangle_area from triangle01_poly_integral import triangle01_poly_integral # # Get map coefficients from reference RS triangle to general XY triangle. # R = a+b*X+c*Y # S = d+e*X+f*Y # a, b, c, d, e, f = rs_to_xy_map ( t ) # # Compute # P1(R,S) = (a+b*R+c*S)^i. # P2(R,S) = (d+e*R+f*S)^j. # d1 = 1 p1 = np.array ( [ a, b, c ] ) dp1, pp1 = poly_power_linear ( d1, p1, i ) d2 = 1 p2 = np.array ( [ d, e, f ] ) dp2, pp2 = poly_power_linear ( d2, p2, j ) # # Compute the product # P3(R,S) = (a+b*R+c*S)^i * (d+e*R+f*S)^j. # d3, p3 = poly_product ( dp1, pp1, dp2, pp2 ) # # Compute the integral of P3(R,S) over the reference triangle. # q = triangle01_poly_integral ( d3, p3 ) # # Multiply by the area of the physical triangle T(X,Y) divided by # the area of the reference triangle. # q = q * triangle_area ( t ) / 0.5 return q def triangle_monomial_integral_test ( ): #*****************************************************************************80 # ## TRIANGLE_MONOMIAL_INTEGRAL_TEST estimates integrals over a triangle. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 April 2015 # # Author: # # John Burkardt # import numpy as np print '' print 'TRIANGLE_MONOMIAL_INTEGRAL_TEST' print ' TRIANGLE_MONOMIAL_INTEGRAL returns the integral Q of' print ' a monomial X^I Y^J over the interior of a triangle.' # # Test 1: # t = np.array ( [ \ [ 0.0, 0.0 ], \ [ 1.0, 0.0 ], \ [ 0.0, 1.0 ] ] ) i = 1 j = 0 print '' print ' Triangle vertices:' print ' (X1,Y1) = (%g,%g)' % ( t[0,0], t[0,1] ) print ' (X2,Y2) = (%g,%g)' % ( t[1,0], t[1,1] ) print ' (X3,Y3) = (%g,%g)' % ( t[2,0], t[2,1] ) print ' Integrand = x^%d * y^%d\n' % ( i, j ) q = triangle_monomial_integral ( i, j, t ) q2 = 1.0 / 6.0 print ' Computed Q = %g' % ( q ) print ' Exact Q = %g' % ( q2 ) # # Test 2: # t = np.array ( [ \ [ 0.0, 0.0 ], \ [ 1.0, 0.0 ], \ [ 1.0, 2.0 ] ] ) i = 1 j = 1 print '' print ' Triangle vertices:' print ' (X1,Y1) = (%g,%g)' % ( t[0,0], t[0,1] ) print ' (X2,Y2) = (%g,%g)' % ( t[1,0], t[1,1] ) print ' (X3,Y3) = (%g,%g)' % ( t[2,0], t[2,1] ) print ' Integrand = x^%d * y^%d\n' % ( i, j ) q = triangle_monomial_integral ( i, j, t ) q2 = 0.5 print ' Computed Q = %g' % ( q ) print ' Exact Q = %g' % ( q2 ) # # Test 3: # t = np.array ( [ \ [ -3.0, 0.0 ], \ [ 6.0, 0.0 ], \ [ 0.0, 3.0 ] ] ) i = 1 j = 0 print '' print ' Triangle vertices:' print ' (X1,Y1) = (%g,%g)' % ( t[0,0], t[0,1] ) print ' (X2,Y2) = (%g,%g)' % ( t[1,0], t[1,1] ) print ' (X3,Y3) = (%g,%g)' % ( t[2,0], t[2,1] ) print ' Integrand = x^%d * y^%d\n' % ( i, j ) q = triangle_monomial_integral ( i, j, t ) q2 = 13.5 print ' Computed Q = %g' % ( q ) print ' Exact Q = %g' % ( q2 ) # # Test 4: # t = np.array ( [ \ [ 0.0, 0.0 ], \ [ 4.0, 0.0 ], \ [ 0.0, 1.0 ] ] ) i = 1 j = 1 print '' print ' Triangle vertices:' print ' (X1,Y1) = (%g,%g)' % ( t[0,0], t[0,1] ) print ' (X2,Y2) = (%g,%g)' % ( t[1,0], t[1,1] ) print ' (X3,Y3) = (%g,%g)' % ( t[2,0], t[2,1] ) print ' Integrand = x^%d * y^%d\n' % ( i, j ) q = triangle_monomial_integral ( i, j, t ) q2 = 2.0 / 3.0 print ' Computed Q = %g' % ( q ) print ' Exact Q = %g' % ( q2 ) # # Terminate. # print '' print 'TRIANGLE_MONOMIAL_INTEGRAL_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) triangle_monomial_integral_test ( ) timestamp ( )