#! /usr/bin/env python # def triangle_poly_integral ( d, p, t ): #*****************************************************************************80 # ## TRIANGLE_POLY_INTEGRAL: polynomial integral over a triangle. # # Location: # # http://people.sc.fsu.edu/~jburkardt/py_src/triangle_integrals/triangle_poly_integral.py # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer D, the degree of the polynomial. # # Input, real P(M), the polynomial coefficients. # M = ((D+1)*(D+2))/2. # # Input, real T(2,3), the vertices of the triangle. # # Output, real Q, the integral. # from i4_to_pascal import i4_to_pascal from triangle_monomial_integral import triangle_monomial_integral m = ( ( d + 1 ) * ( d + 2 ) ) / 2 q = 0.0 for k in range ( 1, m + 1 ): km1 = k - 1 i, j = i4_to_pascal ( k ) qk = triangle_monomial_integral ( i, j, t ) q = q + p[km1] * qk return q def triangle_poly_integral_test ( ): #*****************************************************************************80 # ## TRIANGLE_POLY_INTEGRAL_TEST estimates integrals over a triangle. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 April 2015 # # Author: # # John Burkardt # import numpy as np from poly_print import poly_print print '' print 'TRIANGLE_POLY_INTEGRAL_TEST' print ' TRIANGLE_POLY_INTEGRAL returns the integral Q of' print ' a polynomial over the interior of a triangle.' # # Test 1: # Integrate x over reference triangle. # t = np.array ( [ \ [ 0.0, 0.0 ], \ [ 1.0, 0.0 ], \ [ 0.0, 1.0 ] ] ) d = 1 p = np.array ( [ 0.0, 1.0, 0.0 ] ) print '' print ' Triangle vertices:' print ' (X1,Y1) = (%g,%g)' % ( t[0,0], t[0,1] ) print ' (X2,Y2) = (%g,%g)' % ( t[1,0], t[1,1] ) print ' (X3,Y3) = (%g,%g)' % ( t[2,0], t[2,1] ) print '' poly_print ( d, p, ' Integrand p(x,y)' ) q = triangle_poly_integral ( d, p, t ) q2 = 1.0 / 6.0 print '' print ' Computed Q = %g' % ( q ) print ' Exact Q = %g' % ( q2 ) # # Test 2: # Integrate xy over a general triangle. # t = np.array ( [ \ [ 0.0, 0.0 ], \ [ 1.0, 0.0 ], \ [ 1.0, 2.0 ] ] ) d = 2 p = np.array ( [ 0.0, 0.0, 0.0, 0.0, 1.0, 0.0 ] ) print '' print ' Triangle vertices:' print ' (X1,Y1) = (%g,%g)' % ( t[0,0], t[0,1] ) print ' (X2,Y2) = (%g,%g)' % ( t[1,0], t[1,1] ) print ' (X3,Y3) = (%g,%g)' % ( t[2,0], t[2,1] ) print '' poly_print ( d, p, ' Integrand p(x,y)' ) q = triangle_poly_integral ( d, p, t ) q2 = 0.5 print '' print ' Computed Q = %g' % ( q ) print ' Exact Q = %g' % ( q2 ) # # Test 3: # Integrate 2-3x+xy over a general triangle. # t = np.array ( [ \ [ 0.0, 0.0 ], \ [ 1.0, 0.0 ], \ [ 1.0, 3.0 ] ] ) d = 2 p = np.array ( [ 2.0, -3.0, 0.0, 0.0, 1.0, 0.0 ] ) print '' print ' Triangle vertices:' print ' (X1,Y1) = (%g,%g)' % ( t[0,0], t[0,1] ) print ' (X2,Y2) = (%g,%g)' % ( t[1,0], t[1,1] ) print ' (X3,Y3) = (%g,%g)' % ( t[2,0], t[2,1] ) print '' poly_print ( d, p, ' Integrand p(x,y)' ) q = triangle_poly_integral ( d, p, t ) q2 = 9.0 / 8.0 print '' print ' Computed Q = %g' % ( q ) print ' Exact Q = %g' % ( q2 ) # # Test 4: # Integrate -40y + 6x^2 over a general triangle. # t = np.array ( [ \ [ 0.0, 3.0 ], \ [ 1.0, 1.0 ], \ [ 5.0, 3.0 ] ] ) d = 2 p = np.array ( [ 0.0, 0.0,-40.0, 6.0, 0.0, 0.0 ] ) print '' print ' Triangle vertices:' print ' (X1,Y1) = (%g,%g)' % ( t[0,0], t[0,1] ) print ' (X2,Y2) = (%g,%g)' % ( t[1,0], t[1,1] ) print ' (X3,Y3) = (%g,%g)' % ( t[2,0], t[2,1] ) print '' poly_print ( d, p, ' Integrand p(x,y)' ) q = triangle_poly_integral ( d, p, t ) q2 = - 935.0 / 3.0 print '' print ' Computed Q = %g' % ( q ) print ' Exact Q = %g' % ( q2 ) # # Terminate. # print '' print 'TRIANGLE_POLY_INTEGRAL_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) triangle_poly_integral_test ( ) timestamp ( )