#! /usr/bin/env python # def triangle_xy_integral ( x1, y1, x2, y2, x3, y3 ): #*****************************************************************************80 # ## TRIANGLE_XY_INTEGRAL computes the integral of XY over a triangle. # # Location: # # http://people.sc.fsu.edu/~jburkardt/py_src/triangle_integrals/triangle_xy_integral.py # # Discussion: # # This function was written as a special test case for the general # problem of integrating a monomial x^alpha * y^beta over a general # triangle. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real X1, Y1, X2, Y2, X3, Y3, the coordinates of the # triangle vertices. # # Output, real Q, the integral of X*Y over the triangle. # # # x = x1 * ( 1 - xi - eta ) # + x2 * xi # + x3 * eta # # y = y1 * ( 1 - xi - eta ) # + y2 * xi # + y3 * eta # # Rewrite as linear polynomials in (xi,eta): # # x = x1 + ( x2 - x1 ) * xi + ( x3 - x1 ) * eta # y = y1 + ( y2 - y1 ) * xi + ( y3 - y1 ) * eta # # Jacobian: # # J = [ ( x2 - x1 ) ( x3 - x1 ) ] # [ ( y2 - y1 ) ( y3 - y1 ) ] # # det J = ( x2 - x1 ) * ( y3 - y1 ) - ( y2 - y1 ) * ( x3 - x1 ) # # Integrand # # x * y = ( x1 + ( x2 - x1 ) * xi + ( x3 - x1 ) * eta ) # * ( y1 + ( y2 - y1 ) * xi + ( y3 - y1 ) * eta ) # # Rewrite as linear combination of monomials: # # x * y = 1 * x1 * y1 # + eta * ( x1 * ( y3 - y1 ) + ( x3 - x1 ) * y1 ) # + xi * ( x1 * ( y2 - y1 ) + ( x2 - x1 ) * y1 ) # + eta^2 * ( x3 - x1 ) * ( y3 - y1 ) # + xi*eta * ( ( x2 - x1 ) * ( y3 - y1 ) + ( x3 - x1 ) * ( y2 - y1 ) ) # + xi^2 * ( x2 - x1 ) * ( y2 - y1 ) # from triangle01_monomial_integral import triangle01_monomial_integral det = ( x2 - x1 ) * ( y3 - y1 ) - ( y2 - y1 ) * ( x3 - x1 ) p00 = x1 * y1 p01 = x1 * ( y3 - y1 ) + ( x3 - x1 ) * y1 p10 = x1 * ( y2 - y1 ) + ( x2 - x1 ) * y1 p02 = ( x3 - x1 ) * ( y3 - y1 ) p11 = ( x2 - x1 ) * ( y3 - y1 ) + ( x3 - x1 ) * ( y2 - y1 ) p20 = ( x2 - x1 ) * ( y2 - y1 ) q = 0.0 q = q + p00 * triangle01_monomial_integral ( 0, 0 ) q = q + p10 * triangle01_monomial_integral ( 1, 0 ) q = q + p01 * triangle01_monomial_integral ( 0, 1 ) q = q + p20 * triangle01_monomial_integral ( 2, 0 ) q = q + p11 * triangle01_monomial_integral ( 1, 1 ) q = q + p02 * triangle01_monomial_integral ( 0, 2 ) q = q * det return q def triangle_xy_integral_test ( ): #*****************************************************************************80 # ## TRIANGLE_XY_INTEGRAL_TEST tests TRIANGLE_XY_INTEGRAL. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 April 2015 # # Author: # # John Burkardt # print '' print 'TRIANGLE_XY_INTEGRAL_TEST' print ' TRIANGLE_XY_INTEGRAL determines Q, the integral of the' print ' monomial X*Y over a triangle (X1,Y1), (X2,Y2), (X3,Y3).' x1 = 0.0 y1 = 0.0 x2 = 1.0 y2 = 0.0 x3 = 1.0 y3 = 2.0 q = triangle_xy_integral ( x1, y1, x2, y2, x3, y3 ) print '' print ' (X1,Y1) = ( %g,%g )' % ( x1, y1 ) print ' (X2,Y2) = ( %g,%g )' % ( x2, y2 ) print ' (X3,Y3) = ( %g,%g )' % ( x3, y3 ) print ' Q = %g' % ( q ) print ' (Expecting answer 1/2.' x1 = 0.0 y1 = 0.0 x2 = 4.0 y2 = 0.0 x3 = 0.0 y3 = 1.0 q = triangle_xy_integral ( x1, y1, x2, y2, x3, y3 ) print '' print ' (X1,Y1) = ( %g,%g )' % ( x1, y1 ) print ' (X2,Y2) = ( %g,%g )' % ( x2, y2 ) print ' (X3,Y3) = ( %g,%g )' % ( x3, y3 ) print ' Q = %g' % ( q ) print ' (Expecting answer 2/3.' # # Terminate. # print '' print 'TRIANGLE_XY_INTEGRAL_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) triangle_xy_integral_test ( ) timestamp ( )