#! /usr/bin/env python # def xy_to_rs_map ( t ): #*****************************************************************************80 # ## XY_TO_RS_MAP returns the linear map from physical to reference triangle. # # Location: # # http://people.sc.fsu.edu/~jburkardt/py_src/triangle_integrals/xy_to_rs_map.py # # Discussion: # # Given the vertices T of an arbitrary triangle in the (X,Y) coordinate # system, this function returns the coefficients of the linear map # that sends the vertices of T to (0,0), (1,0) and (0,1) respectively # in the reference triangle with coordinates (R,S): # # R = A + B * X + C * Y; # S = D + E * X + F * Y. # # Reference Element T3: # # | # 1 3 # | |\ # | | \ # S | \ # | | \ # | | \ # 0 1-----2 # | # +--0--R--1--> # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real T[3,2], the X and Y coordinates # of the vertices. The vertices are assumed to be the images of # (0,0), (1,0) and (0,1) respectively. # # Output, real A, B, C, D, E, F, the mapping coefficients. # g = ( ( t[2,1] - t[0,1] ) * ( t[1,0] - t[0,0] ) \ - ( t[2,0] - t[0,0] ) * ( t[1,1] - t[0,1] ) ) a = ( - ( t[2,1] - t[0,1] ) * t[0,0] \ + ( t[2,0] - t[0,0] ) * t[0,1] ) / g b = ( t[2,1] - t[0,1] ) / g c = - ( t[2,0] - t[0,0] ) / g d = ( ( t[1,1] - t[0,1] ) * t[0,0] \ - ( t[1,0] - t[0,0] ) * t[0,1] ) / g e = - ( t[1,1] - t[0,1] ) / g f = ( t[1,0] - t[0,0] ) / g return a, b, c, d, e, f def xy_to_rs_map_test ( ): #*****************************************************************************80 # ## XY_TO_RS_MAP_TEST tests XY_TO_RS_MAP. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 April 2015 # # Author: # # John Burkardt # import numpy as np from r8mat_print import r8mat_print print '' print 'XY_TO_RS_MAP_TEST:' print ' XY_TO_RS_MAP determines the coefficients of the linear map' print ' from a general triangle in XY coordinates to the reference' print ' triangle in RS coordinates:' print ' R = a + b * X + c * Y' print ' S = d + e * X + f * Y' t = np.array ( [ \ [ 2.0, 0.0 ], \ [ 3.0, 4.0 ], \ [ 0.0, 3.0 ] ] ) r8mat_print ( 3, 2, t, ' XY triangle vertices:' ) a, b, c, d, e, f = xy_to_rs_map ( t ) print '' print ' Mapping coefficients are:' print '' print ' R = %g + %g * X + %g * Y' % ( a, b, c ) print ' S = %g + %g * X + %g * Y' % ( d, e, f ) print '' print ' Apply map to XY triangle vertices.' print ' Recover RS vertices (0,0), (1,0) and (0,1).' print '' for i in range ( 0, 3 ): r = a + b * t[i,0] + c * t[i,1] s = d + e * t[i,0] + f * t[i,1] print ' V(%d) = (%g,%g)' % ( i, r, s ) # # Terminate. # print '' print 'XY_TO_RS_MAP_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) xy_to_rs_map_test ( ) timestamp ( )