#!/usr/bin/env python def normal_01_sample ( seed ): #*****************************************************************************80 # ## NORMAL_01_SAMPLE samples the standard normal probability distribution. # # Discussion: # # The standard normal probability distribution function (PDF) has # mean 0 and standard deviation 1. # # Method: # # The Box-Muller method is used, which is efficient, but # generates two values at a time. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer SEED, a seed for the random number generator. # # Output, real VALUE, a sample of the standard normal PDF. # # Output, integer SEED, an updated seed for the random number generator. # import numpy as np from r8_uniform_01 import r8_uniform_01 r1, seed = r8_uniform_01 ( seed ) r2, seed = r8_uniform_01 ( seed ) value = np.sqrt ( - 2.0 * np.log ( r1 ) ) * np.cos ( 2.0 * np.pi * r2 ) return value, seed def normal_01_sample_test ( ): #*****************************************************************************80 # ## NORMAL_01_SAMPLE_TEST tests NORMAL_01_SAMPLE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 February 2015 # # Author: # # John Burkardt # print '' print 'NORMAL_01_SAMPLE_TEST' print ' NORMAL_01_SAMPLE returns samples from the normal' print ' distribution with mean 0 and standard deviation 1.' print '' seed = 123456789 for i in range ( 0, 10 ): x, seed = normal_01_sample ( seed ) print ' %4d %14.6g' % ( i, x ) print '' print 'NORMAL_01_SAMPLE_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) normal_01_sample_test ( ) timestamp ( )