#!/usr/bin/env python # def normal_ms_mean ( mu, sigma ): #*****************************************************************************80 # ## NORMAL_MS_MEAN returns the mean of the Normal MS distribution. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real MU, SIGMA, the parameters of the PDF. # 0.0 < SIGMA. # # Output, real VALUE, the mean of the PDF. # value = mu return value def normal_ms_mean_test ( ): #*****************************************************************************80 # ## NORMAL_MS_MEAN_TEST tests NORMAL_MS_MEAN. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 March 2015 # # Author: # # John Burkardt # import numpy as np from normal_ms_sample import normal_ms_sample from r8vec_max import r8vec_max from r8vec_mean import r8vec_mean from r8vec_min import r8vec_min print '' print 'NORMAL_MS_MEAN_TEST' print ' NORMAL_MS_MEAN computes the mean' print ' of the Normal MS distribution.' mu = 100.0 sigma = 15.0 m = normal_ms_mean ( mu, sigma ) print '' print ' PDF parameter MU = %g' % ( mu ) print ' PDF parameter SIGMA = %g' % ( sigma ) print ' PDF mean = %g' % ( m ) nsample = 1000 seed = 123456789 x = np.zeros ( nsample ) for i in range ( 0, nsample ): x[i], seed = normal_ms_sample ( mu, sigma, seed ) ms = r8vec_mean ( nsample, x ) xmax = r8vec_max ( nsample, x ) xmin = r8vec_min ( nsample, x ) print '' print ' Sample size = %6d' % ( nsample ) print ' Sample mean = %14g' % ( ms ) print ' Sample maximum = %14g' % ( xmax ) print ' Sample minimum = %14g' % ( xmin ) print '' print 'NORMAL_MS_MEAN_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) normal_ms_mean_test ( ) timestamp ( )