#!/usr/bin/env python # def normal_ms_moment_central ( order, mu, sigma ): #*****************************************************************************80 # ## NORMAL_MS_MOMENT_CENTRAL evaluates central moments of the Normal MS distribution. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer ORDER, the order of the moment. # # Input, real MU, the mean of the distribution. # # Input, real SIGMA, the standard deviation of the distribution. # # Output, real VALUE, the value of the central moment. # from r8_factorial2 import r8_factorial2 if ( ( order % 2 ) == 0 ): value = r8_factorial2 ( order - 1 ) * sigma ** order else: value = 0.0 return value def normal_ms_moment_central_values ( order, mu, sigma ): #*****************************************************************************80 # ## NORMAL_MS_MOMENT_CENTRAL_VALUES evaluates central moments 0 through 8 of the Normal PDF. # # Discussion: # # The formula was posted by John D Cook. # # Order Moment # ----- ------ # 0 1 # 1 0 # 2 sigma^2 # 3 0 # 4 3 sigma^4 # 5 0 # 6 15 sigma^6 # 7 0 # 8 105 sigma^8 # 9 0 # 10 945 sigma^10 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer ORDER, the order of the moment. # 0 <= ORDER <= 8. # # Input, real MU, the mean of the distribution. # # Input, real SIGMA, the standard deviation of the distribution. # # Output, real VALUE, the value of the central moment. # from sys import exit if ( order == 0 ): value = 1.0 elif ( order == 1 ): value = 0.0 elif ( order == 2 ): value = sigma ** 2 elif ( order == 3 ): value = 0.0 elif ( order == 4 ): value = 3.0 * sigma ** 4 elif ( order == 5 ): value = 0.0 elif ( order == 6 ): value = 15.0 * sigma ** 6 elif ( order == 7 ): value = 0.0 elif ( order == 8 ): value = 105.0 * sigma ** 8 elif ( order == 9 ): value = 0.0 elif ( order == 10 ): value = 945.0 * sigma ** 10 else: print '' print 'NORMAL_MS_MOMENT_CENTRAL_VALUES - Fatal error!' print ' Only ORDERS 0 through 8 are available.' exit ( 'NORMAL_MS_MOMENT_CENTRAL_VALUES - Fatal error!' ) return value def normal_ms_moment_central_test ( ): #*****************************************************************************80 # ## NORMAL_MS_MOMENT_CENTRAL_TEST tests NORMAL_MS_MOMENT_CENTRAL. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 March 2015 # # Author: # # John Burkardt # import numpy as np test_num = 4 mu_test = np.array ( [ 0.0, 2.0, 10.0, 0.0 ] ) sigma_test = np.array ( [ 1.0, 1.0, 2.0, 2.0 ] ) print '' print 'NORMAL_MS_MOMENT_CENTRAL_TEST' print ' NORMAL_MS_MOMENT_CENTRAL evaluates central moments' print ' of the Normal MS distribution.' for test in range ( 0, test_num ): mu = mu_test[test] sigma = sigma_test[test] print '' print ' Mu = %g, Sigma = %g' % ( mu, sigma ) print ' Order Moment' print '\n' for order in range ( 0, 9 ): moment1 = normal_ms_moment_central ( order, mu, sigma ) moment2 = normal_ms_moment_central_values ( order, mu, sigma ) print ' %2d %12g %12g' % ( order, moment1, moment2 ) print '' print 'NORMAL_MS_MOMENT_CENTRAL_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) normal_ms_moment_central_test ( ) timestamp ( )