#!/usr/bin/env python # def normal_ms_pdf ( x, mu, sigma ): #*****************************************************************************80 # ## NORMAL_MS_PDF evaluates the Normal MS PDF. # # Discussion: # # The Normal MS PDF is also called the Gaussian PDF. # # Formula: # # PDF(X)(MU,SIGMA) = EXP ( - 0.5 * ( ( X - MU ) / SIGMA )^2 ) # / SQRT ( 2 * PI * SIGMA^2 ) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real X, the argument of the PDF. # # Input, real MU, SIGMA, the parameters of the PDF. # 0.0 < SIGMA. # # Output, real VALUE, the value of the PDF. # import numpy as np value = np.exp ( - 0.5 * ( ( x - mu ) / sigma ) ** 2 ) \ / np.sqrt ( 2.0 * np.pi * sigma ** 2 ) return value def normal_ms_pdf_test ( ): #*****************************************************************************80 # ## NORMAL_MS_PDF_TEST tests NORMAL_MS_PDF. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 March 2015 # # Author: # # John Burkardt # print '' print 'NORMAL_MS_PDF_TEST' print ' NORMAL_MS_PDF evaluates the PDF' print ' for the Normal MS distribution.' mu = 100.0; sigma = 15.0; seed = 123456789 print '' print ' PDF parameter MU = %g' % ( mu ) print ' PDF parameter SIGMA = %g' % ( sigma ) print '' print ' X PDF' print '' for i in range ( -20, +21 ): x = mu + sigma * float ( i ) / 10.0 pdf = normal_ms_pdf ( x, mu, sigma ) print ' %14.6g %24.16g' % ( x, pdf ) print '' print 'NORMAL_MS_PDF_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) normal_ms_pdf_test ( ) timestamp ( )