#!/usr/bin/env python def normal_ms_sample ( mu, sigma, seed ): #*****************************************************************************80 # ## NORMAL_MS_SAMPLE samples the Normal MS distribution. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real MU, SIGMA, the parameters of the PDF. # 0.0 < SIGMA. # # Input, integer SEED, a seed for the random number generator. # # Output, real VALUE, a sample of the standard normal PDF. # # Output, integer SEED, an updated seed for the random number generator. # import numpy as np from normal_01_sample import normal_01_sample y, seed = normal_01_sample ( seed ) value = mu + sigma * y return value, seed def normal_ms_sample_test ( ): #*****************************************************************************80 # ## NORMAL_MS_SAMPLE_TEST tests NORMAL_MS_SAMPLE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 March 2015 # # Author: # # John Burkardt # print '' print 'NORMAL_MS_SAMPLE_TEST' print ' NORMAL_MS_SAMPLE samples' print ' the Normal MS distribution.' mu = 100.0 sigma = 15.0 seed = 123456789 print '' print ' PDF parameter MU = %g\n' % ( mu ) print ' PDF parameter SIGMA = %g' % ( sigma ) print '' for i in range ( 0, 10 ): x, seed = normal_ms_sample ( mu, sigma, seed ) print ' %4d %14.6g' % ( i, x ) print '' print 'NORMAL_MS_SAMPLE_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) normal_ms_sample_test ( ) timestamp ( )