#!/usr/bin/env python def truncated_normal_a_cdf_inv ( cdf, mu, sigma, a ): #*****************************************************************************80 # ## TRUNCATED_NORMAL_A_CDF_INV inverts the lower truncated Normal CDF. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real CDF, the value of the CDF. # 0.0 <= CDF <= 1.0. # # Input, real MU, SIGMA, the mean and standard deviation of the # parent Normal distribution. # # Input, real A, the lower truncation limit. # # Output, real X, the corresponding argument. # from normal_01_cdf import normal_01_cdf from normal_01_cdf_inv import normal_01_cdf_inv from sys import exit if ( cdf < 0.0 or 1.0 < cdf ): print '' print 'TRUNCATED_NORMAL_A_CDF_INV - Fatal error!' print ' CDF < 0 or 1 < CDF.' exit ( 'TRUNCATED_NORMAL_A_CDF_INV - Fatal error!' ) alpha = ( a - mu ) / sigma alpha_cdf = normal_01_cdf ( alpha ) beta_cdf = 1.0 xi_cdf = ( beta_cdf - alpha_cdf ) * cdf + alpha_cdf xi = normal_01_cdf_inv ( xi_cdf ) x = mu + sigma * xi return x def truncated_normal_a_cdf_inv_test ( ): #*****************************************************************************80 # ## TRUNCATED_NORMAL_A_CDF_INV_TEST tests TRUNCATED_NORMAL_A_CDF_INV. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 March 2015 # # Author: # # John Burkardt # from truncated_normal_a_cdf import truncated_normal_a_cdf from truncated_normal_a_sample import truncated_normal_a_sample sample_num = 10 seed = 123456789 a = 50.0 mu = 100.0 sigma = 25.0 print '' print 'TRUNCATED_NORMAL_A_CDF_INV_TEST' print ' TRUNCATED_NORMAL_A_CDF_INV inverts the CDF of' print ' the lower Truncated Normal distribution.' print '' print ' The "parent" normal distribution has' print ' mean = %g' % ( mu ) print ' standard deviation = %g' % ( sigma ) print ' The parent distribution is truncated to' print ' the interval [%g,+oo)' % ( a ) print '' print ' X CDF CDF_INV' print '' for i in range ( 0, sample_num ): x, seed = truncated_normal_a_sample ( mu, sigma, a, seed ) cdf = truncated_normal_a_cdf ( x, mu, sigma, a ) x2 = truncated_normal_a_cdf_inv ( cdf, mu, sigma, a ) print ' %14.6g %14.6g %14.6g' % ( x, cdf, x2 ) print '' print 'TRUNCATED_NORMAL_A_CDF_INV_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) truncated_normal_a_cdf_inv_test ( ) timestamp ( )