#!/usr/bin/env python # def truncated_normal_ab_variance ( mu, sigma, a, b ): #*****************************************************************************80 # ## TRUNCATED_NORMAL_AB_VARIANCE: variance of the Truncated Normal distribution. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real MU, SIGMA, the parameters of the PDF. # # Input, real A, B, the lower and upper truncation limits. # # Output, real VALUE, the variance of the PDF. # from normal_01_cdf import normal_01_cdf from normal_01_pdf import normal_01_pdf alpha = ( a - mu ) / sigma beta = ( b - mu ) / sigma alpha_pdf = normal_01_pdf ( alpha ) beta_pdf = normal_01_pdf ( beta ) alpha_cdf = normal_01_cdf ( alpha ) beta_cdf = normal_01_cdf ( beta ) value = sigma * sigma * ( 1.0 \ + ( alpha * alpha_pdf - beta * beta_pdf ) / ( beta_cdf - alpha_cdf ) \ - ( ( alpha_pdf - beta_pdf ) / ( beta_cdf - alpha_cdf ) ) ** 2 ) return value def truncated_normal_ab_variance_test ( ): #*****************************************************************************80 # ## TRUNCATED_NORMAL_AB_VARIANCE_TEST tests TRUNCATED_NORMAL_AB_VARIANCE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 March 2015 # # Author: # # John Burkardt # import numpy as np from truncated_normal_ab_sample import truncated_normal_ab_sample from r8vec_variance import r8vec_variance sample_num = 1000 seed = 123456789 a = 50.0 b = 150.0 mu = 100.0 sigma = 25.0 print '' print 'TRUNCATED_NORMAL_AB_VARIANCE_TEST' print ' TRUNCATED_NORMAL_AB_VARIANCE computes the variance' print ' of the Truncated Normal distribution.' print '' print ' The "parent" normal distribution has' print ' mean = %g' % ( mu ) print ' standard deviation = %g' % ( sigma ) print ' The parent distribution is truncated to' print ' the interval [%g,%g]' % ( a, b ) value = truncated_normal_ab_variance ( mu, sigma, a, b ) print '' print ' PDF variance = %g' % ( value ) x = np.zeros ( sample_num ) for i in range ( 0, sample_num ): x[i], seed = truncated_normal_ab_sample ( mu, sigma, a, b, seed ) value = r8vec_variance ( sample_num, x ) print '' print ' Sample size = %d' % ( sample_num ) print ' Sample variance = %g' % ( value ) print '' print 'TRUNCATED_NORMAL_AB_VARIANCE_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) truncated_normal_ab_variance_test ( ) timestamp ( )